Home
Class 12
CHEMISTRY
Given the data 25^(@) C, Ag+ I^(-) to...

Given the data `25^(@) C`,
`Ag+ I^(-) to AgI+e^(-)` , `E^(@) = 0.152V`
`Ag to Ag^(+) + E(-)`, `E^(@) = - 0.800V`
What is the value of` K_(sp) ` for AgI?

A

Antilog `(-8.12)`

B

antilog `(+8.612)`

C

antilog `(-37.83)`

D

antilog `(-16.1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product constant (Ksp) for AgI, we can follow these steps: ### Step 1: Write the half-reactions and their standard electrode potentials (E°) We have two half-reactions: 1. \( \text{Ag}^+ + e^- \rightarrow \text{AgI} \) with \( E^\circ = 0.152 \, \text{V} \) 2. \( \text{Ag} \rightarrow \text{Ag}^+ + e^- \) with \( E^\circ = -0.800 \, \text{V} \) ### Step 2: Determine the overall cell reaction The overall reaction for the formation of AgI from Ag+ and I- can be written as: \[ \text{Ag}^+ + \text{I}^- \rightarrow \text{AgI} + e^- \] ### Step 3: Calculate the standard cell potential (E°cell) The standard cell potential is calculated using the formula: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] Here, Ag+ is reduced (cathode) and Ag is oxidized (anode): - \( E^\circ_{\text{cathode}} = 0.152 \, \text{V} \) - \( E^\circ_{\text{anode}} = -0.800 \, \text{V} \) Thus, \[ E^\circ_{\text{cell}} = 0.152 - (-0.800) = 0.152 + 0.800 = 0.952 \, \text{V} \] ### Step 4: Relate E°cell to Ksp using the Nernst equation The Nernst equation relates the standard cell potential to the equilibrium constant (Ksp): \[ E^\circ_{\text{cell}} = \frac{0.0591}{n} \log K_{sp} \] Where \( n \) is the number of moles of electrons transferred in the balanced equation. Here, \( n = 1 \). ### Step 5: Rearranging the equation to solve for Ksp Rearranging the Nernst equation gives: \[ \log K_{sp} = \frac{n \cdot E^\circ_{\text{cell}}}{0.0591} \] Substituting \( E^\circ_{\text{cell}} = 0.952 \, \text{V} \) and \( n = 1 \): \[ \log K_{sp} = \frac{1 \cdot 0.952}{0.0591} \] Calculating this gives: \[ \log K_{sp} \approx 16.094 \] ### Step 6: Convert from log Ksp to Ksp To find Ksp, we take the antilog: \[ K_{sp} = 10^{16.094} \] Calculating this gives: \[ K_{sp} \approx 1.23 \times 10^{16} \] ### Final Answer Thus, the value of \( K_{sp} \) for AgI is approximately \( 1.23 \times 10^{16} \). ---

To find the solubility product constant (Ksp) for AgI, we can follow these steps: ### Step 1: Write the half-reactions and their standard electrode potentials (E°) We have two half-reactions: 1. \( \text{Ag}^+ + e^- \rightarrow \text{AgI} \) with \( E^\circ = 0.152 \, \text{V} \) 2. \( \text{Ag} \rightarrow \text{Ag}^+ + e^- \) with \( E^\circ = -0.800 \, \text{V} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Given the data at 25^(@)C Ag+I^(-)rarrAgl+e^(-)" "E^(@)=0.152V Ag rarrAg^(+)+e^(-)E^(@)=-0.800V What is the value of log K_(sp) for AgI?

Given the data 25^0 C, Ag+I^(-) rarr AgI+e^- E^0=1.52V Agrarr Ag^++e^_ E^0=-0.800V What is the value of log K_(sp) for Agl ? (2.303 RT//F=0.059V)

At 25^(@)C, {:(Ag+I^(-)rarr,AgI+e,,E^(@) =0.152V),(Agrarr,Ag.^(+)+e,,E^(@) =- 0.80V):} The log K_(sp) of AgI is: ((2.303RT)/(F)=0.059)

For Zn^(2+) //Zn, E^(@) =- 0.76 , for Ag^(+)//Ag, E^(@) = -0.799V . The correct statement is