Home
Class 12
CHEMISTRY
If E(Cu^(2+)|Cu)^(@) = 0.34V and E(Cu^(2...

If `E_(Cu^(2+)|Cu)^(@) = 0.34V` and `E_(Cu^(2+)|Cu^(+))^(@)= 0.15 V` then the value for disproportion for `Cu^(+)` is :

A

`(-0.19V)`

B

`(-0.38V)`

C

`(0.94)`

D

`(0.38V)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value for the disproportionation potential of \( Cu^+ \), we can follow these steps: ### Step 1: Understand the Reactions We have two half-reactions involving copper: 1. The reduction of \( Cu^{2+} \) to \( Cu \): \[ Cu^{2+} + 2e^- \rightarrow Cu \quad (E^\circ = 0.34 \, V) \] 2. The reduction of \( Cu^{2+} \) to \( Cu^+ \): \[ Cu^{2+} + e^- \rightarrow Cu^+ \quad (E^\circ = 0.15 \, V) \] The disproportionation reaction for \( Cu^+ \) can be represented as: \[ 2Cu^+ \rightarrow Cu^{2+} + Cu \] ### Step 2: Write the Gibbs Free Energy Change Equations The Gibbs free energy change (\( \Delta G \)) for each half-reaction can be calculated using the formula: \[ \Delta G = -nFE^\circ \] where \( n \) is the number of moles of electrons transferred and \( F \) is Faraday's constant. For the first reaction (reduction of \( Cu^{2+} \)): \[ \Delta G_1 = -2F(0.34) \] For the second reaction (reduction of \( Cu^{2+} \)): \[ \Delta G_2 = -F(0.15) \] ### Step 3: Set Up the Disproportionation Reaction For the disproportionation reaction, we can express its Gibbs free energy change as: \[ \Delta G_{disproportionation} = \Delta G_1 - 2\Delta G_2 \] Substituting the values from above: \[ \Delta G_{disproportionation} = (-2F(0.34)) - (-F(0.15)) \] \[ = -2F(0.34) + F(0.15) \] \[ = -2F(0.34) + F(0.15) \] ### Step 4: Calculate the Disproportionation Potential Now, we can express the overall Gibbs free energy change in terms of the standard potential for the disproportionation reaction: \[ \Delta G_{disproportionation} = -nFE^\circ_{disproportionation} \] For the disproportionation of \( Cu^+ \), \( n = 1 \): \[ -2F(0.34) + F(0.15) = -FE^\circ_{disproportionation} \] Dividing through by \( -F \): \[ E^\circ_{disproportionation} = 2(0.34) - 0.15 \] \[ = 0.68 - 0.15 \] \[ = 0.53 \, V \] ### Step 5: Final Calculation Thus, the value for the disproportionation potential of \( Cu^+ \) is: \[ E^\circ_{disproportionation} = 0.53 \, V \] ### Summary The value for the disproportionation potential of \( Cu^+ \) is \( 0.53 \, V \).

To find the value for the disproportionation potential of \( Cu^+ \), we can follow these steps: ### Step 1: Understand the Reactions We have two half-reactions involving copper: 1. The reduction of \( Cu^{2+} \) to \( Cu \): \[ Cu^{2+} + 2e^- \rightarrow Cu \quad (E^\circ = 0.34 \, V) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

E_(Cu^(2+)//Cu)^(@)=0.34V E_(Cu^(+)//Cu)^(@)=0.522V E_(Cu^(2+)//Cu^(+))^(@)=

Given that E_(Cu^(2+)//Cu)^(0)=0.337 and E_(Cu^(+)//Cu^(2+))^(0)=-0.153V . then calculate E_(Cu^(+)//Cu)^(0)

Given: (i) Cu^(2+)+2e^(-) rarr Cu, E^(@) = 0.337 V (ii) Cu^(2+)+e^(-) rarr Cu^(+), E^(@) = 0.153 V Electrode potential, E^(@) for the reaction, Cu^(+)+e^(-) rarr Cu , will be

Given that E_(cu^(+2)//cu)^(@)=+0.34 V E_(Mg^(+2)//Mg)^(@)=-2.37V which of the following correct

The standard potential E^(@) for the half reactions are as : Zn rarr Zn^(2+) + 2e^(-), E^(@) = 0.76V Cu rarr Cu^(2+) +2e^(-) , E^(@) = -0.34 V The standard cell voltage for the cell reaction is ? Zn +Cu^(2) rarr Zn ^(2+) +Cu

Cu^(2+)+2e^(-)toCu,E^(@)+0.34V Cu^(2+)+e^(-)toCu^(+),E^(@)=+0.15V The equilibrium constant for the reaction Cu+Cu^(2+)to2Cu^(+) at 25^(@)C