Home
Class 12
MATHS
The determinant |(cos(theta+phi),-sin(...

The determinant
`|(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)|` is

A

0

B

independent of `theta`

C

independent of `phi`

D

independent of `theta` & `phi` both

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) & \cos(2\phi) \\ \sin(\theta) & \cos(\theta) & \sin(\phi) \\ -\cos(\theta) & \sin(\theta) & \cos(\phi) \end{vmatrix} \] we will use properties of determinants and trigonometric identities. ### Step 1: Expand the determinant using the first row. Using the first row to expand the determinant, we have: \[ D = \cos(\theta + \phi) \begin{vmatrix} \cos(\theta) & \sin(\phi) \\ \sin(\theta) & \cos(\phi) \end{vmatrix} - (-\sin(\theta + \phi)) \begin{vmatrix} \sin(\theta) & \sin(\phi) \\ -\cos(\theta) & \cos(\phi) \end{vmatrix} + \cos(2\phi) \begin{vmatrix} \sin(\theta) & \cos(\theta) \\ -\cos(\theta) & \sin(\theta) \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} \cos(\theta) & \sin(\phi) \\ \sin(\theta) & \cos(\phi) \end{vmatrix} = \cos(\theta) \cos(\phi) - \sin(\theta) \sin(\phi) = \cos(\theta + \phi) \] 2. For the second determinant: \[ \begin{vmatrix} \sin(\theta) & \sin(\phi) \\ -\cos(\theta) & \cos(\phi) \end{vmatrix} = \sin(\theta) \cos(\phi) - (-\cos(\theta) \sin(\phi)) = \sin(\theta) \cos(\phi) + \cos(\theta) \sin(\phi) = \sin(\theta + \phi) \] 3. For the third determinant: \[ \begin{vmatrix} \sin(\theta) & \cos(\theta) \\ -\cos(\theta) & \sin(\theta) \end{vmatrix} = \sin^2(\theta) + \cos^2(\theta) = 1 \] ### Step 3: Substitute back into the determinant expression. Substituting these results back into the determinant expression gives: \[ D = \cos(\theta + \phi) \cdot \cos(\theta + \phi) + \sin(\theta + \phi) \cdot \sin(\theta + \phi) + \cos(2\phi) \cdot 1 \] This simplifies to: \[ D = \cos^2(\theta + \phi) + \sin^2(\theta + \phi) + \cos(2\phi) \] ### Step 4: Use the Pythagorean identity. Using the identity \(\cos^2(x) + \sin^2(x) = 1\): \[ D = 1 + \cos(2\phi) \] ### Step 5: Use the double angle formula for cosine. Using the identity \(\cos(2\phi) = 2\cos^2(\phi) - 1\): \[ D = 1 + (2\cos^2(\phi) - 1) = 2\cos^2(\phi) \] ### Final Result: Thus, the value of the determinant is \[ D = 2\cos^2(\phi) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-II)|6 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-3|36 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-1|13 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant ,cos(theta+phi),-sin(theta+phi),cos2 phisin theta,cos theta,sin phi-cos theta,sin theta,cos phi]| is

if determinant |{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}| is

The value of the determinant |{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}| is

If theta, phi epsilon R , then the determinant Delta=|(cos theta, - sin theta, 1),(sin theta, cos theta, 1),(cos(theta+phi),-sin(theta+phi),0)| lies in the interval

Evaluate the determinates abs([-costheta,-sin theta],[sintheta,-costheta])

(sin(theta+phi)-2sin theta+sin(theta-phi))/(cos(theta+phi)-2cos theta+cos(theta-phi))=tan theta

(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+(sin^(3)theta-cos^(3)theta)/(sintheta-costheta)=

The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta) is equal to

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then