Home
Class 12
MATHS
The total number of distinct x in R for ...

The total number of distinct `x in R` for which `|[x, x^2, 1+x^3] , [2x,4x^2,1+8x^3] , [3x, 9x^2,1+27x^3]|=10` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-I)|13 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

The , total number of distinct x in R for which det[[x,x^(2),1+x^(3)2x,4x^(2),1+8x^(3)3x,9x^(2),1+27x^(3)]]=10 is (A)0(B)1(C)2 (D) 3,

If [[x^2-4x,x^2],[x^2,x^3]]=[[-3,1],[-x+2,1]] (then find r.)

x = (sqrt3+1)/2 , find 4x^3 +2x^2 -8x +7

If mean deviations about median of x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x is 30, then |x| equals:-

Find the value of m for which (2x-1) is a factor of (8x^(4)+4x^(3)-16x^2+10x+m) .

Find the sum of the infinite geometric series 1+3x+9x^2+27x^3+…..

Solve :det[[x-2,2x-3,3x-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0