Home
Class 12
MATHS
If f(x)=|(cosx,cosx,sinx),(-cosx,cosx,-s...

If `f(x)=|(cosx,cosx,sinx),(-cosx,cosx,-sinx),(sinx,sinx,cosx)|`, then find its determinant

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix given by \( f(x) = \begin{vmatrix} \cos x & \cos x & \sin x \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix} \), we will use the properties of determinants and some algebraic manipulations. ### Step-by-Step Solution: 1. **Write the Determinant**: \[ D = \begin{vmatrix} \cos x & \cos x & \sin x \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix} \] 2. **Expand the Determinant**: We can expand the determinant using the first row: \[ D = \cos x \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} - \cos x \begin{vmatrix} -\cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} + \sin x \begin{vmatrix} -\cos x & \cos x \\ \sin x & \sin x \end{vmatrix} \] 3. **Calculate the 2x2 Determinants**: - For the first determinant: \[ \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1 \] - For the second determinant: \[ \begin{vmatrix} -\cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} = -\cos x \cdot \cos x + \sin x \cdot \sin x = -\cos^2 x + \sin^2 x \] - For the third determinant: \[ \begin{vmatrix} -\cos x & \cos x \\ \sin x & \sin x \end{vmatrix} = -\cos x \cdot \sin x - \sin x \cdot \cos x = -2 \cos x \sin x \] 4. **Substituting Back**: Now substituting these values back into the determinant: \[ D = \cos x \cdot 1 - \cos x (-\cos^2 x + \sin^2 x) + \sin x (-2 \cos x \sin x) \] Simplifying this gives: \[ D = \cos x + \cos x (\sin^2 x - \cos^2 x) - 2 \sin^2 x \cos x \] 5. **Combine Like Terms**: \[ D = \cos x + \cos x \sin^2 x - \cos^3 x - 2 \sin^2 x \cos x \] \[ D = \cos x (1 + \sin^2 x - \cos^2 x - 2 \sin^2 x) \] \[ D = \cos x (1 - \cos^2 x - \sin^2 x) \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ D = \cos x (1 - 1) = 0 \] ### Final Answer: The determinant \( D = 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-I)|13 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

(x+sinx)/(1-cosx)

|[cosx,-sinx],[sinx,cosx]|

If A=[(cosx,-sinx),(sinx,cosx)] , then A A^(T) is

int(sinx)/(sinx-cosx)dx=

y=(sinx)^(cosx)+(cosx)^(sinx)

Find intdx/(sinx+cosx)

If |[cosx, sinx, cosx], [-sinx, cosx, sinx], [-cosx, -sinx, cosx]|=0 , then x=

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to