Home
Class 12
MATHS
Show that the points whose position vect...

Show that the points whose position vectors are `vec(a) + 2vec(b) + 5vec(c), 3vec(a) + 2vec(b) + vec(c), 2vec(a) + 2vec(b) + 3vec(c)` are colliner.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 1|42 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Show that the points having position vectors (-2vec(a) + 3 vec(b)+5vec(c)),(vec(a)+ 2 vec(b)+ 3 vec(c)) and (7vec(a)- vec(c)) are collinear, whatever be vec(a),vec(b),vec(c).

Show that the points having position vectors vec(a), vec(b),(vec(c)=3 vec(a)- 2 vec(b)) are collinear, whatever be vec(a),vec(b),vec(c).

Examine for coplanarity of the following sets of points 3vec(a) + 2vec(b) -5vec(c), 3vec(a) + 8vec(b) + 5vec(c), -3vec(a) + 2vec(b) + vec(c) , vec(a) + 4vec(b) - 3vec(c) .

If the position vector of these points are vec(a) -vec(b)+3 vec(c ), 2 vec(a)+3vec(b)-4 vec( c) ,-7 vec(b) + 10 vec(c ) , then the three points are

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b-vec c and 4vec a-7vec b+7vec c are collinear.

Show that the point A,B,C with position vectors vec a-2vec b+3vec c,2vec a+3vec b-4vec c and -7vec b+10vec c are collinear.

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b+2vec c and -8vec a+13vec b are collinear whatever be vec a,vec b,vec c .

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

[vec a xx (3vec b + 2vec c), vec b xx (vec c-2vec a), 2vec c xx (vec a-3vec b)]

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

MOTION-VECTOR -EXERCISE - 4 ( LEVEL-II)
  1. Show that the points whose position vectors are vec(a) + 2vec(b) + 5v...

    Text Solution

    |

  2. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  3. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  4. If veca, vecb and vecc are unit coplanar vectors, then the scalar trip...

    Text Solution

    |

  5. If veca =hati + hatj-hatk, vecb = - hati = - hati + 2hatj + 2hatk and ...

    Text Solution

    |

  6. Given that vectors veca and vecb asre perpendicular to each other, fin...

    Text Solution

    |

  7. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  8. The diagonals of a parallelogram are given by vectors 2hati+3hatj-6hat...

    Text Solution

    |

  9. Find the all the values of lamda such that (x,y,z)!=(0,0,0)and x(hati+...

    Text Solution

    |

  10. Two vertices of a triangle are at -hati+3hatj and 2hati+5hatj and its ...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vec|^2+...

    Text Solution

    |

  12. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  13. Let vec A(t) = f1(t) hat i + f2(t) hat j and vec B(t) = g(t)hat i+g2(...

    Text Solution

    |

  14. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  15. Let vecV=2hati+hatj-hatk and vecW=hati+3hatk. It vecU is a unit vector...

    Text Solution

    |

  16. The value of a so that the volume of the paralelopiped formed by hati+...

    Text Solution

    |

  17. A unit vector int eh plane of the vectors 2hati+hatj+hatk, hati-hatj+h...

    Text Solution

    |

  18. If veca=veci+vecj+veck, veca.vecb=1 and vecaxxvecb=vecj-veck, then vec...

    Text Solution

    |

  19. If veca,vecb,vecc,vecd are four distinct vectors satisfying the condit...

    Text Solution

    |

  20. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hathatj-h...

    Text Solution

    |

  21. Let vecA be a vector parallel to the of intersection of planes P1 and ...

    Text Solution

    |