Home
Class 12
MATHS
यदि A (-hati + 3hatj + 2hatk) , B (-4ha...

यदि `A` `(-hati + 3hatj + 2hatk) , B (-4hati + 2hatj - 2hatk)` तथा `C(5hati + (lambda +1)hatj + mu hatk)` संरेखीय है तब :

A

`lambda = 5, mu = 10`

B

`lambda = 10 , mu = 5`

C

`lambda = 4 , mu = 10`

D

`lambda = 5, mu = - 10`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(\lambda\) and \(\mu\) such that the vectors \(A\), \(B\), and \(C\) are collinear, we need to set up the problem using the condition for collinearity of vectors. The vectors are given as: \[ A = -\hat{i} + 3\hat{j} + 2\hat{k} \] \[ B = -4\hat{i} + 2\hat{j} - 2\hat{k} \] \[ C = 5\hat{i} + (\lambda + 1)\hat{j} + \mu\hat{k} \] ### Step 1: Form the determinant For three vectors to be collinear, the determinant of the matrix formed by their components must be equal to zero. We can write the determinant as follows: \[ \begin{vmatrix} -1 & 3 & 2 \\ -4 & 2 & -2 \\ 5 & \lambda + 1 & \mu \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We will expand this determinant: \[ = -1 \begin{vmatrix} 2 & -2 \\ \lambda + 1 & \mu \end{vmatrix} - 3 \begin{vmatrix} -4 & -2 \\ 5 & \mu \end{vmatrix} + 2 \begin{vmatrix} -4 & 2 \\ 5 & \lambda + 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 2 & -2 \\ \lambda + 1 & \mu \end{vmatrix} = 2\mu - (-2)(\lambda + 1) = 2\mu + 2\lambda + 2\) 2. \(\begin{vmatrix} -4 & -2 \\ 5 & \mu \end{vmatrix} = (-4)(\mu) - (-2)(5) = -4\mu + 10\) 3. \(\begin{vmatrix} -4 & 2 \\ 5 & \lambda + 1 \end{vmatrix} = (-4)(\lambda + 1) - (2)(5) = -4\lambda - 4 - 10 = -4\lambda - 14\) Now substituting back into the determinant expansion: \[ = -1(2\mu + 2\lambda + 2) - 3(-4\mu + 10) + 2(-4\lambda - 14) = 0 \] ### Step 3: Simplify the equation Expanding this gives: \[ -2\mu - 2\lambda - 2 + 12\mu - 30 - 8\lambda - 28 = 0 \] Combining like terms: \[ (12\mu - 2\mu) + (-2\lambda - 8\lambda) + (-2 - 30 - 28) = 0 \] This simplifies to: \[ 10\mu - 10\lambda - 60 = 0 \] ### Step 4: Rearranging the equation Rearranging gives: \[ 10\mu - 10\lambda = 60 \] Dividing through by 10: \[ \mu - \lambda = 6 \] ### Step 5: Conclusion Thus, we have the relationship between \(\mu\) and \(\lambda\): \[ \mu = \lambda + 6 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

Find the shortest distance between the lines: (i) vec(r) = 3 hati + 8 hat(j) + 3 hatk + lambda (3 hati - hatj + hatk) and vec(r) = - 3 hat(i) - 7 hatj + 6 hatk + mu (-3 hati + 2 hatj + 4 hatk ) (ii) ( hati - hatj + 2 hatk) + lambda ( -2 hati + hatj + 3 hatk ) and (2 hati + 3 hatj - hatk) + mu (3 hati - 2 hatj + 2 hatk). (iii) vec(r) = (hati + 2 hatj + 3 hatk) + lambda ( hati - 3 hatj + 2 hatk ) and vec(r) = (4 hati + 5 hatj + 6 hatk) + mu (2 hati + 3 hatj + hatk) .

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Show that the lines : vec(r) = 3 hati + 2 hatj - 4 hatk + lambda (hati + 2 hatj + 2 hatk) and vec(r) = 5 hati - 2 hatj + mu (3 hati + 2 hatj + 6 hatk) (ii) vec(r) = (hati + hatj - hatk) + lambda (3 hati - hatj) . and vec(r) = (4 hati - hatk) + mu (2 hati + 3 hatk) are intersecting. Hence, find their point of intersection.

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

The points with position vectors 5hati + 5hatk, -4hati + 3hatj - hatk and 2hati +hatj + 3hatk

Find a unit vector in the diection of the vector. (i) (3hati + 4hatj - 5hatk) , (ii) (3hati - 2hatj + 6hatk) (iii) (hati + hatk) , (iv) (2hati + hatj + 2hatk)

MOTION-VECTOR -EXERCISE - 1
  1. If the vector vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat...

    Text Solution

    |

  2. If the vector vecb is collinear with the vector vec a ( 2sqrt2,-1,4) a...

    Text Solution

    |

  3. यदि A (-hati + 3hatj + 2hatk) , B (-4hati + 2hatj - 2hatk) तथा C(5ha...

    Text Solution

    |

  4. The vectors 2 hati + 3 hatj , 5 hati + 6hatj and 8 hatj + lambda hatj ...

    Text Solution

    |

  5. If vec a , vec ba n d vec c are three non-zero vectors, no two of whi...

    Text Solution

    |

  6. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  7. The set of values of 'm' for which the vectors vec(a) = mhati + (m + 1...

    Text Solution

    |

  8. यदि |vec a| = 7, |vec a-vec b | = 8 तथा |vec a +vec b| = 10, तब |ve...

    Text Solution

    |

  9. Angle between diagonals of a parallelogram whose side are represented ...

    Text Solution

    |

  10. Let vec(a) , vec(b),vec(c) be vectors of length 3,4,5 respectively. Le...

    Text Solution

    |

  11. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  12. A paticle acted on by constant forces 4hati=hatj-3hatk and 3hati+hatj-...

    Text Solution

    |

  13. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  14. If vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3h...

    Text Solution

    |

  15. Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = ...

    Text Solution

    |

  16. Let vec a , vec ba n d vec c be three units vectors such that 2 vec a...

    Text Solution

    |

  17. Let vec a = hati+hatj and vec b = 2 hat i - hat k. The point of inters...

    Text Solution

    |

  18. Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=...

    Text Solution

    |

  19. Unit vector perpendicular to the plane of DeltaABC with position vecto...

    Text Solution

    |

  20. If vec(b) and vec(c) are two non-collinear vectors such that vec(a)...

    Text Solution

    |