Home
Class 12
MATHS
The set of values of 'm' for which the v...

The set of values of 'm' for which the vectors `vec(a) = mhati + (m + 1)hatj +(m + 8)hatk`
`vec(b) = (m + 3)hati + (m+4)hatj + (m +5) hatk` and `vec(c) = (m + 6)hati + (m + 7)hatj + (m + 8) hatk` are non - coplanar is

A

R

B

`R - {1}`

C

`R - {1,2}`

D

`phi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the set of values of 'm' for which the vectors \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar, we need to find when the determinant of the matrix formed by these vectors is not equal to zero. ### Step-by-step Solution: 1. **Define the Vectors:** \[ \vec{a} = m \hat{i} + (m + 1) \hat{j} + (m + 8) \hat{k} \] \[ \vec{b} = (m + 3) \hat{i} + (m + 4) \hat{j} + (m + 5) \hat{k} \] \[ \vec{c} = (m + 6) \hat{i} + (m + 7) \hat{j} + (m + 8) \hat{k} \] 2. **Set Up the Matrix:** The vectors can be represented in matrix form as: \[ \begin{vmatrix} m & m + 1 & m + 8 \\ m + 3 & m + 4 & m + 5 \\ m + 6 & m + 7 & m + 8 \end{vmatrix} \] 3. **Calculate the Determinant:** We will calculate the determinant of the above matrix. To simplify the calculation, we can perform row operations. - First, perform the operation \(R_3 \rightarrow R_3 - R_1\): \[ R_3 = (m + 6 - m) \hat{i} + (m + 7 - (m + 1)) \hat{j} + (m + 8 - (m + 8)) \hat{k} = 6 \hat{i} + 6 \hat{j} + 0 \hat{k} \] The matrix now looks like: \[ \begin{vmatrix} m & m + 1 & m + 8 \\ m + 3 & m + 4 & m + 5 \\ 6 & 6 & 0 \end{vmatrix} \] - Next, perform the operation \(R_2 \rightarrow R_2 - R_1\): \[ R_2 = ((m + 3) - m) \hat{i} + ((m + 4) - (m + 1)) \hat{j} + ((m + 5) - (m + 8)) \hat{k} = 3 \hat{i} + 3 \hat{j} - 3 \hat{k} \] The matrix now looks like: \[ \begin{vmatrix} m & m + 1 & m + 8 \\ 3 & 3 & -3 \\ 6 & 6 & 0 \end{vmatrix} \] 4. **Factor Out Common Terms:** We can factor out common terms from the rows: \[ 3 \cdot 2 \cdot \begin{vmatrix} m & m + 1 & m + 8 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} \] 5. **Calculate the Simplified Determinant:** Now, we calculate the determinant: \[ = 3 \cdot 2 \cdot \left( m \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} - (m + 1) \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} + (m + 8) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \right) \] The determinant simplifies to: \[ = 3 \cdot 2 \cdot (m - (m + 1) + (m + 8) \cdot 0) = 3 \cdot 2 \cdot (-1) = -6 \] 6. **Conclusion:** Since the determinant is a constant (-6) and not equal to zero for any value of \(m\), the vectors \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar for all values of \(m\). ### Final Answer: The set of values of \(m\) for which the vectors are non-coplanar is: \[ \text{All real numbers } \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Find the area of the triangle formed by the tips of the vectors vec(a) = hati - hatj - 3hatk, vec(b) = 4hati - 3hatj +hatk and vec(c) = 3 hati - hatj +2 hatk .

What is the projection of vec(A) = hati + hatj+ hatk on vec(B) = (hati + hatk)

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

Prove that the vectors vec(A) = 2hati - 3hatj - hatk and vec(B) =- 6 hati + 9hatj +3hatk are parallel.

Find the angle between the vertors vec(A) = hati + 2hatj - hatk and vec(B) = - hati +hatj - 2hatk .

Find the value of 'm' for which the line vec(r) = ( hati + 2 hatk ) + lambda (2 hati - m hatj - 3 hatk) is parallel to the plane vec(r).(m hati + 3 hatj + hatk ) = 4.

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

Find a unit vector perpendicular the vectors vec(A) = 4 hati = hatj +3 hatk and vec(B) =- 2hati + hatj - 2hatk .

Find the angle between the vectors vec(A) = 2 hati - 4hatj +6 hatk and vec(B) = 3 hati + hatj +2hatk .

Find the sine of the angle between the vectors vec(A) = 3 hati - 4hatj +5hatk and vec(B) = hati - hatj +hatk .

MOTION-VECTOR -EXERCISE - 1
  1. If vec a , vec ba n d vec c are three non-zero vectors, no two of whi...

    Text Solution

    |

  2. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  3. The set of values of 'm' for which the vectors vec(a) = mhati + (m + 1...

    Text Solution

    |

  4. यदि |vec a| = 7, |vec a-vec b | = 8 तथा |vec a +vec b| = 10, तब |ve...

    Text Solution

    |

  5. Angle between diagonals of a parallelogram whose side are represented ...

    Text Solution

    |

  6. Let vec(a) , vec(b),vec(c) be vectors of length 3,4,5 respectively. Le...

    Text Solution

    |

  7. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  8. A paticle acted on by constant forces 4hati=hatj-3hatk and 3hati+hatj-...

    Text Solution

    |

  9. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  10. If vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3h...

    Text Solution

    |

  11. Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = ...

    Text Solution

    |

  12. Let vec a , vec ba n d vec c be three units vectors such that 2 vec a...

    Text Solution

    |

  13. Let vec a = hati+hatj and vec b = 2 hat i - hat k. The point of inters...

    Text Solution

    |

  14. Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=...

    Text Solution

    |

  15. Unit vector perpendicular to the plane of DeltaABC with position vecto...

    Text Solution

    |

  16. If vec(b) and vec(c) are two non-collinear vectors such that vec(a)...

    Text Solution

    |

  17. Find the vector of length 3 unit which is perpendicular to hat i+ ...

    Text Solution

    |

  18. Given the vertices A(2,3,1), B(4,1,-2), C(6,3,7) and D(-5,-4,8) of a ...

    Text Solution

    |

  19. For a non zero vector vec(A) . If the equations vec(A).vec(B) = vec...

    Text Solution

    |

  20. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |