Home
Class 12
MATHS
If vec(a)= hati - hatj, bar(b) = hat(i) ...

If `vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3hat(j) + 5hat(k)` and `vec(n)` be a unit vector such that `vec(b).vec(n) =0, vec(a).vec(n) = 0` then value of `|vec(c).vec(n)|` is

A

1

B

3

C

5

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the outlined approach based on the information provided in the question. ### Step 1: Define the vectors We have the following vectors: - \( \vec{a} = \hat{i} - \hat{j} \) - \( \vec{b} = \hat{i} + \hat{j} \) - \( \vec{c} = \hat{i} + 3\hat{j} + 5\hat{k} \) ### Step 2: Understand the conditions We know that: - \( \vec{b} \cdot \vec{n} = 0 \) (which means \( \vec{n} \) is perpendicular to \( \vec{b} \)) - \( \vec{a} \cdot \vec{n} = 0 \) (which means \( \vec{n} \) is also perpendicular to \( \vec{a} \)) - \( \vec{n} \) is a unit vector, so \( |\vec{n}| = 1 \) ### Step 3: Find the cross product \( \vec{a} \times \vec{b} \) To find a vector \( \vec{n} \) that is perpendicular to both \( \vec{a} \) and \( \vec{b} \), we can calculate the cross product \( \vec{a} \times \vec{b} \). Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating this determinant: - The \( \hat{i} \) component: \( 0 - 0 = 0 \) - The \( \hat{j} \) component: \( 0 - 0 = 0 \) - The \( \hat{k} \) component: \( 1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2 \) Thus, \[ \vec{a} \times \vec{b} = 2\hat{k} \] ### Step 4: Express \( \vec{n} \) Since \( \vec{n} \) is a unit vector and is in the direction of \( \vec{a} \times \vec{b} \), we can express it as: \[ \vec{n} = \lambda (2\hat{k}) \] where \( \lambda \) is a scalar to ensure \( |\vec{n}| = 1 \). ### Step 5: Find \( \lambda \) To find \( \lambda \), we set the magnitude of \( \vec{n} \) to 1: \[ |\vec{n}| = |2\lambda \hat{k}| = 2|\lambda| = 1 \implies |\lambda| = \frac{1}{2} \] Thus, we can take \( \lambda = \frac{1}{2} \), leading to: \[ \vec{n} = \hat{k} \] ### Step 6: Calculate \( |\vec{c} \cdot \vec{n}| \) Now we need to find \( |\vec{c} \cdot \vec{n}| \): \[ \vec{c} \cdot \vec{n} = (\hat{i} + 3\hat{j} + 5\hat{k}) \cdot \hat{k} \] Calculating the dot product: \[ \vec{c} \cdot \vec{n} = 0 + 0 + 5 = 5 \] ### Step 7: Final answer Thus, the value of \( |\vec{c} \cdot \vec{n}| \) is: \[ |\vec{c} \cdot \vec{n}| = 5 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Let vec(a)=2vec(j)-3vec(k),vec(b) = hat(j)+3hat(k) and vec(c)=3vec(i)+3hat(j)+hat(k) . Let hat(n) be a unit vector such that vec(a).hat(n)=vec(b).hat(n)=0 . What is the value of vec(c).hat(n) ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vec a = hat i + hat j, vec b = hat i + hat k, vec c = hat k + hat i, a unit vector parallel to vec a + vec b + vec c

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

MOTION-VECTOR -EXERCISE - 1
  1. A paticle acted on by constant forces 4hati=hatj-3hatk and 3hati+hatj-...

    Text Solution

    |

  2. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  3. If vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3h...

    Text Solution

    |

  4. Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = ...

    Text Solution

    |

  5. Let vec a , vec ba n d vec c be three units vectors such that 2 vec a...

    Text Solution

    |

  6. Let vec a = hati+hatj and vec b = 2 hat i - hat k. The point of inters...

    Text Solution

    |

  7. Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=...

    Text Solution

    |

  8. Unit vector perpendicular to the plane of DeltaABC with position vecto...

    Text Solution

    |

  9. If vec(b) and vec(c) are two non-collinear vectors such that vec(a)...

    Text Solution

    |

  10. Find the vector of length 3 unit which is perpendicular to hat i+ ...

    Text Solution

    |

  11. Given the vertices A(2,3,1), B(4,1,-2), C(6,3,7) and D(-5,-4,8) of a ...

    Text Solution

    |

  12. For a non zero vector vec(A) . If the equations vec(A).vec(B) = vec...

    Text Solution

    |

  13. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  14. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  15. If A(1,1,1),C(2,-1,2) the vector equation of the line vec(AB) is v...

    Text Solution

    |

  16. The value of [(veca -2vecb-vecc)(veca-vecb)( veca-vecb-vecc)] is equal...

    Text Solution

    |

  17. The volume of the parallelopiped constructed on the diagonals of the f...

    Text Solution

    |

  18. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  19. Let overset(to)(a) =a(1) hat(i) + a(2) hat(j) + a(3) hat(k) , overse...

    Text Solution

    |

  20. Vector vec x satisfying the relation vec A . vec x = c and vec B xx v...

    Text Solution

    |