Home
Class 12
MATHS
Given the three vectors vec(a) = - 2hat...

Given the three vectors `vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j)` and `vec(c) = 4hat(i) + 4hat(j) - 2hat(k)`. The projection of the vector `3vec(a) - 2vec(b)` on the vector `vec(c)` is

A

11

B

`-11`

C

13

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(3\vec{a} - 2\vec{b}\) on the vector \(\vec{c}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 5\hat{j} \] \[ \vec{c} = 4\hat{i} + 4\hat{j} - 2\hat{k} \] ### Step 2: Calculate \(3\vec{a}\) To find \(3\vec{a}\): \[ 3\vec{a} = 3(-2\hat{i} + \hat{j} + \hat{k}) = -6\hat{i} + 3\hat{j} + 3\hat{k} \] ### Step 3: Calculate \(-2\vec{b}\) To find \(-2\vec{b}\): \[ -2\vec{b} = -2(\hat{i} + 5\hat{j}) = -2\hat{i} - 10\hat{j} \] ### Step 4: Calculate \(3\vec{a} - 2\vec{b}\) Now, we will combine \(3\vec{a}\) and \(-2\vec{b}\): \[ 3\vec{a} - 2\vec{b} = (-6\hat{i} + 3\hat{j} + 3\hat{k}) + (-2\hat{i} - 10\hat{j}) \] \[ = (-6 - 2)\hat{i} + (3 - 10)\hat{j} + 3\hat{k} \] \[ = -8\hat{i} - 7\hat{j} + 3\hat{k} \] ### Step 5: Calculate the projection of \(3\vec{a} - 2\vec{b}\) on \(\vec{c}\) The formula for the projection of vector \(\vec{u}\) on vector \(\vec{v}\) is given by: \[ \text{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v} \] In our case, \(\vec{u} = 3\vec{a} - 2\vec{b}\) and \(\vec{v} = \vec{c}\). ### Step 6: Calculate the dot product \((3\vec{a} - 2\vec{b}) \cdot \vec{c}\) \[ \vec{u} \cdot \vec{c} = (-8\hat{i} - 7\hat{j} + 3\hat{k}) \cdot (4\hat{i} + 4\hat{j} - 2\hat{k}) \] \[ = (-8)(4) + (-7)(4) + (3)(-2) \] \[ = -32 - 28 - 6 = -66 \] ### Step 7: Calculate the magnitude of \(\vec{c}\) \[ |\vec{c}| = \sqrt{(4)^2 + (4)^2 + (-2)^2} = \sqrt{16 + 16 + 4} = \sqrt{36} = 6 \] ### Step 8: Calculate the projection Now we can find the projection: \[ \text{proj}_{\vec{c}}(3\vec{a} - 2\vec{b}) = \frac{-66}{6^2} \vec{c} = \frac{-66}{36} \vec{c} = \frac{-11}{6} \vec{c} \] ### Final Answer The projection of the vector \(3\vec{a} - 2\vec{b}\) on the vector \(\vec{c}\) is: \[ \frac{-11}{6} \vec{c} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

MOTION-VECTOR -EXERCISE - 1
  1. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. If vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3h...

    Text Solution

    |

  3. Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = ...

    Text Solution

    |

  4. Let vec a , vec ba n d vec c be three units vectors such that 2 vec a...

    Text Solution

    |

  5. Let vec a = hati+hatj and vec b = 2 hat i - hat k. The point of inters...

    Text Solution

    |

  6. Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=...

    Text Solution

    |

  7. Unit vector perpendicular to the plane of DeltaABC with position vecto...

    Text Solution

    |

  8. If vec(b) and vec(c) are two non-collinear vectors such that vec(a)...

    Text Solution

    |

  9. Find the vector of length 3 unit which is perpendicular to hat i+ ...

    Text Solution

    |

  10. Given the vertices A(2,3,1), B(4,1,-2), C(6,3,7) and D(-5,-4,8) of a ...

    Text Solution

    |

  11. For a non zero vector vec(A) . If the equations vec(A).vec(B) = vec...

    Text Solution

    |

  12. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  13. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  14. If A(1,1,1),C(2,-1,2) the vector equation of the line vec(AB) is v...

    Text Solution

    |

  15. The value of [(veca -2vecb-vecc)(veca-vecb)( veca-vecb-vecc)] is equal...

    Text Solution

    |

  16. The volume of the parallelopiped constructed on the diagonals of the f...

    Text Solution

    |

  17. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  18. Let overset(to)(a) =a(1) hat(i) + a(2) hat(j) + a(3) hat(k) , overse...

    Text Solution

    |

  19. Vector vec x satisfying the relation vec A . vec x = c and vec B xx v...

    Text Solution

    |

  20. If vec a , vec b ,a n d vec c be non-zero vectors such that no tow...

    Text Solution

    |