Home
Class 12
MATHS
If vec(b) and vec(c) are two non-colli...

If `vec(b)` and `vec(c)` are two non-collinear vectors such that `vec(a) || (vec(b) xx vec(c))` , then `(vec(a) xx vec(b)).(vec(a) xx vec(c))` is equal to

A

`vec(a)^(2) (vec(b).vec(c))`

B

`vec(b)^(2)(vec(a).vec(c))`

C

`vec(c)^(2) (vec(a).vec(b))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})\) given that \(\vec{a} || (\vec{b} \times \vec{c})\). ### Step-by-Step Solution: 1. **Understanding the Relationship**: Since \(\vec{a} || (\vec{b} \times \vec{c})\), it implies that \(\vec{a}\) is perpendicular to both \(\vec{b}\) and \(\vec{c}\). This is because the cross product \(\vec{b} \times \vec{c}\) is perpendicular to the plane formed by \(\vec{b}\) and \(\vec{c}\). 2. **Using the Dot Product**: From the property of the dot product, if two vectors are perpendicular, their dot product is zero. Therefore: \[ \vec{a} \cdot \vec{b} = 0 \quad \text{and} \quad \vec{a} \cdot \vec{c} = 0 \] 3. **Applying the Scalar Triple Product**: The expression \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})\) can be rewritten using the scalar triple product: \[ (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = \vec{b} \cdot (\vec{a} \times \vec{c}) \times \vec{a} \] This is equivalent to the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\). 4. **Using the Vector Triple Product Identity**: We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Applying this to our case: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 5. **Substituting the Dot Products**: Since we established that \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{a} \cdot \vec{c} = 0\), we substitute these into the equation: \[ \vec{a} \times (\vec{b} \times \vec{c}) = 0 \cdot \vec{b} - 0 \cdot \vec{c} = \vec{0} \] 6. **Final Result**: Since \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})\) simplifies to zero, we conclude: \[ (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = 0 \] ### Conclusion: Thus, the value of \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})\) is **0**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

If vec b and vec c are two non-collinear vectors such that vec a*(vec b+vec c)=4 and vec a xx(vec b xxvec c)=(x^(2)-2x+6)vec b+(sin y)vec c then the point (x,y) lies on

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

MOTION-VECTOR -EXERCISE - 1
  1. Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=...

    Text Solution

    |

  2. Unit vector perpendicular to the plane of DeltaABC with position vecto...

    Text Solution

    |

  3. If vec(b) and vec(c) are two non-collinear vectors such that vec(a)...

    Text Solution

    |

  4. Find the vector of length 3 unit which is perpendicular to hat i+ ...

    Text Solution

    |

  5. Given the vertices A(2,3,1), B(4,1,-2), C(6,3,7) and D(-5,-4,8) of a ...

    Text Solution

    |

  6. For a non zero vector vec(A) . If the equations vec(A).vec(B) = vec...

    Text Solution

    |

  7. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  8. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  9. If A(1,1,1),C(2,-1,2) the vector equation of the line vec(AB) is v...

    Text Solution

    |

  10. The value of [(veca -2vecb-vecc)(veca-vecb)( veca-vecb-vecc)] is equal...

    Text Solution

    |

  11. The volume of the parallelopiped constructed on the diagonals of the f...

    Text Solution

    |

  12. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  13. Let overset(to)(a) =a(1) hat(i) + a(2) hat(j) + a(3) hat(k) , overse...

    Text Solution

    |

  14. Vector vec x satisfying the relation vec A . vec x = c and vec B xx v...

    Text Solution

    |

  15. If vec a , vec b ,a n d vec c be non-zero vectors such that no tow...

    Text Solution

    |

  16. The pairs vec a,vec b and vec c,vec d each determines plane. Then the ...

    Text Solution

    |

  17. Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxv...

    Text Solution

    |

  18. If veca,vecb,vecc are linearly independent vectors, then which one of ...

    Text Solution

    |

  19. A point taken on each median of a triangle divides the median in the r...

    Text Solution

    |

  20. If G is the centroid of triangle A B C ,t h e n vec G A+ vec G B+ vec ...

    Text Solution

    |