Home
Class 12
MATHS
If the unit vectors vec(e(1)) and vec(...

If the unit vectors ` vec(e_(1))` and `vec(e_(2))` are inclined at an angle `2theta` and `|vec(e_(1)) - vec(e_(2))| lt 2` , then for `theta in [0,pi], theta` may lie in the interval

A

`[0,(pi)/(6))`

B

`[(pi)/(6) , (pi)/(2)]`

C

`((5pi)/(6),pi]`

D

`[(pi)/(2),(5 pi)/(6)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the range for θ. ### Step 1: Understand the Given Information We have two unit vectors \( \vec{e_1} \) and \( \vec{e_2} \) such that: - The angle between them is \( 2\theta \). - The magnitude of their difference is less than 2, i.e., \( |\vec{e_1} - \vec{e_2}| < 2 \). ### Step 2: Express the Magnitude Condition Since both vectors are unit vectors, we know: \[ |\vec{e_1}| = 1 \quad \text{and} \quad |\vec{e_2}| = 1 \] Now, we can express the magnitude of the difference: \[ |\vec{e_1} - \vec{e_2}|^2 < 4 \] Expanding this, we have: \[ (\vec{e_1} - \vec{e_2}) \cdot (\vec{e_1} - \vec{e_2}) < 4 \] This expands to: \[ |\vec{e_1}|^2 + |\vec{e_2}|^2 - 2 \vec{e_1} \cdot \vec{e_2} < 4 \] ### Step 3: Substitute the Magnitudes Since \( |\vec{e_1}|^2 = 1 \) and \( |\vec{e_2}|^2 = 1 \), we substitute these values: \[ 1 + 1 - 2 \vec{e_1} \cdot \vec{e_2} < 4 \] This simplifies to: \[ 2 - 2 \vec{e_1} \cdot \vec{e_2} < 4 \] ### Step 4: Rearranging the Inequality Rearranging gives: \[ -2 \vec{e_1} \cdot \vec{e_2} < 2 \] Dividing by -2 (and reversing the inequality): \[ \vec{e_1} \cdot \vec{e_2} > -1 \] ### Step 5: Relate the Dot Product to the Angle The dot product of two vectors can be expressed in terms of the angle between them: \[ \vec{e_1} \cdot \vec{e_2} = |\vec{e_1}| |\vec{e_2}| \cos(2\theta) = \cos(2\theta) \] Thus, we have: \[ \cos(2\theta) > -1 \] ### Step 6: Analyzing the Cosine Condition The cosine function has a range of \([-1, 1]\). The condition \( \cos(2\theta) > -1 \) is always satisfied for any angle \( 2\theta \) except when \( 2\theta = \pi \) (where \( \cos(2\theta) = -1 \)). Therefore, we need to exclude this case: \[ 2\theta \neq \pi \implies \theta \neq \frac{\pi}{2} \] ### Step 7: Determine the Range of θ Since \( \theta \) is defined in the interval \([0, \pi]\), we conclude: \[ \theta \in [0, \pi] \text{ but } \theta \neq \frac{\pi}{2} \] Thus, the valid interval for \( \theta \) is: \[ \theta \in [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \] ### Final Answer The interval for \( \theta \) is: \[ \theta \in [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If unit vectors veca and vecb are inclined at an angle 2 theta such that |veca - vecb| lt 1 and 0 le theta le pi , then theta lies in the interval

If the unit vectors veca and vecb are inclined of an angle 2 theta such that |veca -vecb| lt 1 and 0 le theta le pi then theta in the interval

If unit vectors hat(a) and hat(b) are inclined at angle theta , then prove that |vec(a) - vec(b)| = 2 sin.(theta)/(2) .

If hat(e_(1)) and hat(e_(2)) are two unit vectors such that vec(e_(1)) - vec(e_(2)) is also a unit vector , then find the angle theta between hat(e_(1)) and hat(e_(2)) .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) = vec(b) xx ( vec(b) xx vec(c)) . If magnitudes of the vectors vec(a), vec(b) and vec(c) " are" sqrt(2) , 1 and 2 respectively and the angle between vec(b) and vec(c) " is " theta ( 0 lt theta lt (pi)/(2)) , then the value of 1 + tan theta is equal to :

Two vectors vec A and vec B are inclined to each other at an angle theta . Then a unit vector perpendicular to both vec A and vec B

If vec(e_(1)) and vec(e_(2)) are two unit vectors and theta is the angle between them, then sin (theta/2) is:

If unit vectors vec a and vec b are inclined at angle 2 theta such that |vec a-vec b|<1and0<=theta<=pi, then theta lies in interval a.[0,pi/6] b.[5 pi/6,pi] c.[pi/6,pi/2] d.[pi/2,5 pi/6]

vec a and vec b are inclined at an angle theta=30^(@) If |vec a|=1,|vec b|=2 then |(vec a+3vec b)xx(3vec a-vec b)|^(2)=

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. Image of the point P with position vector 7hat(i) - hat(j) + 2hat(k)...

    Text Solution

    |

  2. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  3. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  4. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  5. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  6. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  7. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  8. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  9. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  10. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  11. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  12. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  13. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  14. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  15. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  16. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  17. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  18. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  19. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  20. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |