Home
Class 12
MATHS
Let vec(u) = hat(i) + hat(j), vec(v) = h...

Let `vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j)` and `vec(w) = hat(i) + 2hat(j) + 3hat(k)` . If `hat(n)` is a unit vector such that `vec(u).vec(n)` = 0 and `vec(v).hat(n) = 0` then `|vec(w).hat(n)|` is equal to.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the outlined process to find the value of \(|\vec{w} \cdot \hat{n}|\). ### Step 1: Define the vectors We have the following vectors: - \(\vec{u} = \hat{i} + \hat{j}\) - \(\vec{v} = \hat{i} - \hat{j}\) - \(\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}\) ### Step 2: Define the unit vector \(\hat{n}\) Let \(\hat{n} = x\hat{i} + y\hat{j} + z\hat{k}\). Since \(\hat{n}\) is a unit vector, it satisfies the condition: \[ x^2 + y^2 + z^2 = 1 \] ### Step 3: Use the condition \(\vec{u} \cdot \hat{n} = 0\) Calculating the dot product: \[ \vec{u} \cdot \hat{n} = (\hat{i} + \hat{j}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = x + y + 0 = 0 \] This gives us our first equation: \[ x + y = 0 \quad \text{(1)} \] ### Step 4: Use the condition \(\vec{v} \cdot \hat{n} = 0\) Calculating the dot product: \[ \vec{v} \cdot \hat{n} = (\hat{i} - \hat{j}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = x - y + 0 = 0 \] This gives us our second equation: \[ x - y = 0 \quad \text{(2)} \] ### Step 5: Solve the equations From equations (1) and (2): 1. From (1): \(y = -x\) 2. From (2): \(y = x\) Setting these equal gives: \[ -x = x \implies 2x = 0 \implies x = 0 \] Substituting \(x = 0\) into equation (1): \[ 0 + y = 0 \implies y = 0 \] ### Step 6: Find \(z\) Now substituting \(x\) and \(y\) into the unit vector condition: \[ 0^2 + 0^2 + z^2 = 1 \implies z^2 = 1 \implies z = 1 \quad \text{(since \(z\) is positive for a unit vector)} \] Thus, we have: \[ \hat{n} = 0\hat{i} + 0\hat{j} + 1\hat{k} = \hat{k} \] ### Step 7: Calculate \(|\vec{w} \cdot \hat{n}|\) Now we need to find \(|\vec{w} \cdot \hat{n}|\): \[ \vec{w} \cdot \hat{n} = (\hat{i} + 2\hat{j} + 3\hat{k}) \cdot \hat{k} = 0 + 0 + 3 = 3 \] Thus, the final answer is: \[ |\vec{w} \cdot \hat{n}| = 3 \] ### Final Answer \[ |\vec{w} \cdot \hat{n}| = 3 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vec(a)= hati - hatj, bar(b) = hat(i) + hat(j), vec(c) = hat(i) + 3hat(j) + 5hat(k) and vec(n) be a unit vector such that vec(b).vec(n) =0, vec(a).vec(n) = 0 then value of |vec(c).vec(n)| is

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Let vec(a)=2vec(j)-3vec(k),vec(b) = hat(j)+3hat(k) and vec(c)=3vec(i)+3hat(j)+hat(k) . Let hat(n) be a unit vector such that vec(a).hat(n)=vec(b).hat(n)=0 . What is the value of vec(c).hat(n) ?

vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2hat j+3hat k .If widehat n is a unit vector such that vec u*widehat n=0 and vec v*widehat n then |vec w*widehat n| is equal to

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  2. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  3. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  4. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  5. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  6. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  7. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  8. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  9. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  10. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  11. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  12. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  13. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  14. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  15. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  16. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  17. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  18. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  19. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |

  20. The vector hat(i)+xhat(j)+3hat(k) is rotated through an angle theta an...

    Text Solution

    |