Home
Class 12
MATHS
Let vec(a) = hat(i) + hat(j) + hat(k),ve...

Let `vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k)` and `vec(c) = xhat(i) + (x-2)hat(j) - hat(k)`. If the vector `vec(c)` lies in the plane of `vec(a)` and `vec(b)` then x equals

A

0

B

1

C

`-4`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the vector \( \vec{c} \) lies in the plane formed by the vectors \( \vec{a} \) and \( \vec{b} \). This can be determined using the scalar triple product, which states that if three vectors are coplanar, their scalar triple product is zero. ### Step-by-step Solution: 1. **Define the Vectors**: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = x\hat{i} + (x-2)\hat{j} - \hat{k} \] 2. **Set Up the Determinant**: The condition for coplanarity is given by the determinant of the matrix formed by the vectors \( \vec{a}, \vec{b}, \vec{c} \) being equal to zero: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We can expand the determinant using the first row: \[ = 1 \cdot \begin{vmatrix} -1 & 2 \\ x-2 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 2 \\ x & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1 \\ x & x-2 \end{vmatrix} \] Now, calculate each of the 2x2 determinants: - First determinant: \[ = (-1)(-1) - (2)(x-2) = 1 - 2x + 4 = 5 - 2x \] - Second determinant: \[ = (1)(-1) - (2)(x) = -1 - 2x \] - Third determinant: \[ = (1)(x-2) - (-1)(x) = x - 2 + x = 2x - 2 \] 4. **Combine the Determinants**: Now substituting back into the determinant: \[ 1(5 - 2x) - 1(-1 - 2x) + 1(2x - 2) = 0 \] Simplifying this gives: \[ 5 - 2x + 1 + 2x + 2x - 2 = 0 \] Combine like terms: \[ 5 + 1 - 2 = 0 \implies 4 + 2x = 0 \] 5. **Solve for \( x \)**: \[ 2x + 4 = 0 \implies 2x = -4 \implies x = -2 \] ### Final Answer: \[ x = -2 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j) + hat(k), hat(c) = hat(i) + 2hat(j) , (vec(a) wedge vec(b)) = pi//2 , vec(a).vec(c) = 4 then

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  2. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  3. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  4. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  5. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  6. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  7. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  8. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  9. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  10. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  11. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  12. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  13. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  14. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  15. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  16. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  17. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  18. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  19. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |

  20. The vector hat(i)+xhat(j)+3hat(k) is rotated through an angle theta an...

    Text Solution

    |