Home
Class 12
MATHS
Given vec(a) = xhat(i) + yhat(j) + 2hat(...

Given `vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j) + hat(k), hat(c) = hat(i) + 2hat(j) , (vec(a) wedge vec(b)) = pi//2 , vec(a).vec(c) = 4` then

A

`[vec(a)vec(b)vec(c)]^(2) = |vec(a)|`

B

`[vec(a) vec(b) vec(c)]=|vec(a)|`

C

`[vec(a) vec(b) vec(c)] = 0`

D

`[vec(a) vec(b) vec(c)] =|vec(a)|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the vectors and their relationships based on the conditions provided. Let's break down the solution step by step. ### Given Vectors: 1. \(\vec{a} = x \hat{i} + y \hat{j} + 2 \hat{k}\) 2. \(\vec{b} = \hat{i} - \hat{j} + \hat{k}\) 3. \(\vec{c} = \hat{i} + 2 \hat{j}\) ### Conditions: 1. \(\vec{a} \wedge \vec{b} = \frac{\pi}{2}\) (This means \(\vec{a}\) and \(\vec{b}\) are perpendicular) 2. \(\vec{a} \cdot \vec{c} = 4\) ### Step 1: Use the Perpendicular Condition Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, their dot product is zero: \[ \vec{a} \cdot \vec{b} = 0 \] Calculating the dot product: \[ (x \hat{i} + y \hat{j} + 2 \hat{k}) \cdot (\hat{i} - \hat{j} + \hat{k}) = x(1) + y(-1) + 2(1) = x - y + 2 = 0 \] This gives us our first equation: \[ x - y + 2 = 0 \quad \text{(1)} \] ### Step 2: Use the Second Condition Now, using the second condition: \[ \vec{a} \cdot \vec{c} = 4 \] Calculating the dot product: \[ (x \hat{i} + y \hat{j} + 2 \hat{k}) \cdot (\hat{i} + 2 \hat{j}) = x(1) + y(2) + 2(0) = x + 2y = 4 \] This gives us our second equation: \[ x + 2y = 4 \quad \text{(2)} \] ### Step 3: Solve the System of Equations Now we have a system of equations: 1. \(x - y + 2 = 0\) 2. \(x + 2y = 4\) From equation (1), we can express \(x\) in terms of \(y\): \[ x = y - 2 \quad \text{(3)} \] Substituting equation (3) into equation (2): \[ (y - 2) + 2y = 4 \] \[ 3y - 2 = 4 \] \[ 3y = 6 \implies y = 2 \] Now substituting \(y = 2\) back into equation (3): \[ x = 2 - 2 = 0 \] ### Step 4: Find the Vectors Now we have: \[ x = 0, \quad y = 2 \] Thus, the vector \(\vec{a}\) becomes: \[ \vec{a} = 0 \hat{i} + 2 \hat{j} + 2 \hat{k} = 2 \hat{j} + 2 \hat{k} \] ### Step 5: Calculate the Magnitude of \(\vec{a}\) The magnitude of \(\vec{a}\) is: \[ |\vec{a}| = \sqrt{0^2 + 2^2 + 2^2} = \sqrt{0 + 4 + 4} = \sqrt{8} = 2\sqrt{2} \] ### Step 6: Calculate the Scalar Triple Product The scalar triple product \(\text{box}(\vec{a}, \vec{b}, \vec{c})\) can be calculated using the determinant: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} \] Calculating the determinant: \[ = 0 \cdot \begin{vmatrix} -1 & 1 \\ 2 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} \] \[ = 0 - 2(1 \cdot 0 - 1 \cdot 1) + 2(1 \cdot 2 - (-1) \cdot 1) \] \[ = 0 + 2(0 - 1) + 2(2 + 1) = 0 + (-2) + 6 = 4 \] ### Conclusion Thus, we find that: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = 4 \] And since \( |\vec{a}|^2 = 8 \), we can conclude: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = |\vec{a}|^2 \] ### Final Answer The answer is option D.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  2. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  3. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  4. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  5. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  6. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  7. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  8. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  9. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  10. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  11. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  12. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  13. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  14. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  15. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  16. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  17. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  18. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  19. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |

  20. The vector hat(i)+xhat(j)+3hat(k) is rotated through an angle theta an...

    Text Solution

    |