Home
Class 12
MATHS
(vec(d) + vec(a)).(vec(a) xx (vec(b) xx ...

`(vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d))))` simplifies to

A

`(vec(b).vec(d))[vec(a) vec(c) vec(d)]`

B

`(vec(b).vec(c))[vec(a) vec(b) vec(d)]`

C

`(vec(b).vec(a))[vec(a) vec(b) vec(d)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\vec{d} + \vec{a}) \cdot (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d})))\), we can follow these steps: ### Step 1: Apply the Vector Triple Product Identity We start with the expression \(\vec{b} \times (\vec{c} \times \vec{d})\). We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{b}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{d}\). Thus, we have: \[ \vec{b} \times (\vec{c} \times \vec{d}) = (\vec{b} \cdot \vec{d}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{d} \] ### Step 2: Substitute Back into the Expression Now, substitute this result back into our original expression: \[ (\vec{d} + \vec{a}) \cdot \left(\vec{a} \times \left((\vec{b} \cdot \vec{d}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{d}\right)\right) \] ### Step 3: Distribute the Dot Product Using the distributive property of the dot product: \[ = (\vec{d} + \vec{a}) \cdot \left((\vec{b} \cdot \vec{d}) (\vec{a} \times \vec{c}) - (\vec{b} \cdot \vec{c}) (\vec{a} \times \vec{d})\right) \] This expands to: \[ = (\vec{d} + \vec{a}) \cdot \left((\vec{b} \cdot \vec{d}) \vec{a} \times \vec{c}\right) - (\vec{b} \cdot \vec{c}) (\vec{d} + \vec{a}) \cdot (\vec{a} \times \vec{d}) \] ### Step 4: Evaluate Each Dot Product 1. The first term: \[ (\vec{d} + \vec{a}) \cdot \left((\vec{b} \cdot \vec{d}) \vec{a} \times \vec{c}\right) = (\vec{b} \cdot \vec{d}) \left(\vec{d} + \vec{a}\right) \cdot (\vec{a} \times \vec{c}) \] 2. The second term: \[ (\vec{d} + \vec{a}) \cdot (\vec{a} \times \vec{d}) = 0 \] This is because \(\vec{a} \times \vec{d}\) is perpendicular to both \(\vec{a}\) and \(\vec{d}\). ### Step 5: Final Expression Thus, we are left with: \[ (\vec{b} \cdot \vec{d}) (\vec{d} + \vec{a}) \cdot (\vec{a} \times \vec{c}) \] ### Step 6: Rearranging the Result This can be written as: \[ (\vec{b} \cdot \vec{d}) \cdot \text{(scalar triple product)} \quad \text{where the scalar triple product is } (\vec{a}, \vec{c}, \vec{d}). \] ### Final Answer Thus, the simplified expression is: \[ \vec{b} \cdot \vec{d} \cdot (\vec{a} \times \vec{c} \times \vec{d}) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx vec(b) = vec(c) xx d and vec(a) xx vec(c)= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)-vec(d))xx (vec(b)-vec(c))=vec(0) 2. (vec(a)xx vec(b))xx (vec(c)xx vec(d))=vec(0) Select the correct answer using the code given below :

If bar(A_(1))bar(B) and bar( C ) are three non-coplanar voctors, then (vec(B).(vec(A)xx vec( C )))/((vec( C )xx vec(A)).vec(B))+(vec(B).(vec(A)xx vec( C )))/(vec( C ).(vec(A)xx vec(B))) is equal to

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

For a non zero vector vec(A) . If the equations vec(A).vec(B) = vec(A).vec(C) and vec(A) xx vec(B) = vec(A) xx vec(C) hold simultaneously, then

The triple product of (vec d+vec a)*[vec a xx(vec b xx(vec c xxvec d))] is equal to:

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  2. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  3. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  4. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  5. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  6. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  7. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  8. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  9. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  10. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  11. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  12. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  13. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  14. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  15. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  16. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  17. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  18. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  19. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |

  20. The vector hat(i)+xhat(j)+3hat(k) is rotated through an angle theta an...

    Text Solution

    |