Home
Class 12
MATHS
[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)...

`[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))]` is equal to

A

`[vec(a) vec(b) vec(c)]^(2)`

B

`[vec(a) vec(b)vec(c)]^(3)`

C

`[vec(a)vec(b)vec(c)]^(4)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ [(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})] \] This expression consists of three vector triple products. We will simplify each term using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] ### Step 1: Simplifying the first term The first term is \((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\). Using the vector triple product identity, we can write: \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 2: Simplifying the second term The second term is \((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})\). Applying the vector triple product identity again: \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] ### Step 3: Simplifying the third term The third term is \((\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})\). Using the vector triple product identity once more: \[ (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \] ### Step 4: Combining the results Now we have: 1. First term: \((\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\) 2. Second term: \((\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}\) 3. Third term: \((\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}\) Now, we can combine these three results into a single expression: \[ \begin{align*} & \left[(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\right] + \left[(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}\right] + \left[(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}\right] \\ & = \left[(\vec{a} \cdot \vec{c}) \vec{b} + (\vec{b} \cdot \vec{a}) \vec{c} + (\vec{c} \cdot \vec{b}) \vec{a}\right] - \left[(\vec{a} \cdot \vec{b}) \vec{c} + (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{a}) \vec{b}\right] \end{align*} \] ### Final Result The final result can be expressed as: \[ \text{The expression is equal to } 0 \] This is because each term cancels out with its corresponding negative term.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

(vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifies to

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

Simplify (vec(b)+vec(c )).{(vec(c )+vec(a))xx (vec(a)+vec(b))}

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Show that (vec(A) - vec(B)) xx (vec(A) +vec(B)) = 2(vec(A) xx vec(B))

[(vec a xxvec b)xx(vec b xxvec c)(vec b xxvec c)xx(vec c xxvec a)(vec c xxvec a)xx(vec a xxvec b)] is equal to (where vec a,vec b and vec c are nonzero non-coplanar vector) [vec avec bvec c]^(2) b.[vec avec bvec c]^(3) c.[vec avec bvec c]^(4) d.[vec avec bvec c]

(vec a xxvec b) xx (vec c xxvec d) + (vec a xxvec c) xx (vec d xxvec b) + (vec a xxvec d) xx (vec b xxvec c)

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

MOTION-VECTOR -EXERCISE - 2 ( LEVEL -I)
  1. If a, b, c are then p^(th),q^(th),r^(th), terms of an HP and vec u=...

    Text Solution

    |

  2. If the unit vectors vec(e(1)) and vec(e(2)) are inclined at an ang...

    Text Solution

    |

  3. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  4. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  5. In a quadrilateral ABCD. vec(AC) is the bisector of vec(AB) and vec(...

    Text Solution

    |

  6. If vec a =vec b +vec c,vec b xx vec d =vec 0 ,vec c *vec d = 0 then ...

    Text Solution

    |

  7. Consider a tetrahedron with faces f1, f2, f3, f4. Let vec a1, vec a2...

    Text Solution

    |

  8. Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(...

    Text Solution

    |

  9. Points L, M and N lie on the sides AB, BC and CA of the triangle ABC s...

    Text Solution

    |

  10. For any four points P,Q,R,S |bar(PQ) xx bar(RS) - bra(QR) xx bar(PS) ...

    Text Solution

    |

  11. Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j)...

    Text Solution

    |

  12. Let vec r be a vector perpendicular to vec a + vec b+ vec c, where [ve...

    Text Solution

    |

  13. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  14. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  15. (vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifie...

    Text Solution

    |

  16. [(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(...

    Text Solution

    |

  17. Let vec a , vec ba n d vec c be three non-coplanar vecrors and ve...

    Text Solution

    |

  18. The vectors vec(a) = - 4hat(i) + 3hat(k), vec(b)

    Text Solution

    |

  19. Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}...

    Text Solution

    |

  20. The vector hat(i)+xhat(j)+3hat(k) is rotated through an angle theta an...

    Text Solution

    |