Home
Class 12
MATHS
The vector vec(r) , directed along the ...

The vector `vec(r)` , directed along the external bisector of the angle between the vectors `vec(a) = 7hat(i) - 4hat(j) + 4hat(k)` and `vec(b) = 2hat(i) - hat(j) + 2hat(k)` with `|vec(r)| = 5sqrt6`, is

A

`(5hat(i) - 5hat(j) - 10 hat(k))`

B

`(5)/(3)(hat(i) + 7hat(j) -2hat(k))`

C

`-(5vec(i) - 5hat(j) - 10hat(k))`

D

`(5)/(3) (-hat(i) + 7hat(j) + 2hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{r}\) directed along the external bisector of the angle between the vectors \(\vec{a} = 7\hat{i} - 4\hat{j} + 4\hat{k}\) and \(\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}\) with \(|\vec{r}| = 5\sqrt{6}\), we can follow these steps: ### Step 1: Calculate the magnitudes of vectors \(\vec{a}\) and \(\vec{b}\) The magnitude of vector \(\vec{a}\) is given by: \[ |\vec{a}| = \sqrt{7^2 + (-4)^2 + 4^2} = \sqrt{49 + 16 + 16} = \sqrt{81} = 9 \] The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 2: Find the unit vectors of \(\vec{a}\) and \(\vec{b}\) The unit vector of \(\vec{a}\) is: \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{7\hat{i} - 4\hat{j} + 4\hat{k}}{9} \] The unit vector of \(\vec{b}\) is: \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{2\hat{i} - \hat{j} + 2\hat{k}}{3} \] ### Step 3: Determine the external angle bisector vector The external angle bisector \(\vec{r}\) can be given by the formula: \[ \vec{r} = \frac{\hat{a}}{|\hat{a}|} - \frac{\hat{b}}{|\hat{b}|} \] Substituting the unit vectors: \[ \vec{r} = \frac{7\hat{i} - 4\hat{j} + 4\hat{k}}{9} - \frac{2\hat{i} - \hat{j} + 2\hat{k}}{3} \] To combine these, we need a common denominator: \[ \vec{r} = \frac{7\hat{i} - 4\hat{j} + 4\hat{k}}{9} - \frac{6\hat{i} - 3\hat{j} + 6\hat{k}}{9} \] \[ = \frac{(7 - 6)\hat{i} + (-4 + 3)\hat{j} + (4 - 6)\hat{k}}{9} \] \[ = \frac{1\hat{i} - 1\hat{j} - 2\hat{k}}{9} \] ### Step 4: Scale the vector \(\vec{r}\) to the required magnitude We know that \(|\vec{r}| = 5\sqrt{6}\). To find the vector with this magnitude, we can scale \(\vec{r}\): \[ \vec{r} = k \left(\frac{1\hat{i} - 1\hat{j} - 2\hat{k}}{9}\right) \] where \(k\) is a scaling factor. The magnitude of \(\vec{r}\) is: \[ |\vec{r}| = k \cdot \frac{1}{9} \sqrt{1^2 + (-1)^2 + (-2)^2} = k \cdot \frac{1}{9} \sqrt{6} \] Setting this equal to \(5\sqrt{6}\): \[ k \cdot \frac{1}{9} \sqrt{6} = 5\sqrt{6} \] \[ k = 5 \cdot 9 = 45 \] ### Step 5: Final vector \(\vec{r}\) Thus, the vector \(\vec{r}\) is: \[ \vec{r} = 45 \cdot \frac{1\hat{i} - 1\hat{j} - 2\hat{k}}{9} = 5(1\hat{i} - 1\hat{j} - 2\hat{k}) = 5\hat{i} - 5\hat{j} - 10\hat{k} \] ### Final Answer \[ \vec{r} = 5\hat{i} - 5\hat{j} - 10\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

The vector component of vector vec(A) = 3 hat(i) + 4 hat(j) + 5 hat(k) along vector vec(B) = hat(i) + hat(j) + hat(k) is

The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vector vec(B)= 4hat(i)-4hat(j)+7hat(k) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k