Home
Class 12
MATHS
If vec(z(1)) = a hat(i) + b hat(j) and v...

If `vec(z_(1)) = a hat(i) + b hat(j) and vec(z_(2)) = c hat(i) + d hat(j)` are two vectors in `hat(i)` and `hat(j)` system where `|vec(z_(1))| = |vec(z_(2))| = r ` and `vec(z_(1)).vec(z_(2)) = 0` then `vec(w_(1)) = ahat(i) + chat(j)` and `vec(w_(2)) = b hat(i) + d hat(j)` satisfy .

A

`|vec(w_(1))| = r`

B

`|vec(w_(2))| = r`

C

`vec(w_(1)) .vec(w_(2)) = 0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Find the area of the parallelogram whose diagonals are represented by the vectors (i) vec(d)_(1)= 3 hat(i) + hat(j) - 2 hat(k) and vec(d)_(2) = hat(i) - 3 hat(j) +4 hat(k) (ii) vec(d)_(1)= 2 hat(i) - hat(j) + hat(k) and vec(d)_(2)= 3 hat(i) + 4 hat(j)-hat(k) (iii) vec(d)_(1)= hat(i)- 3 hat(j) + 2 hat(k) and vec(d)_(2)= -hat(i)+2 hat(j).

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Find the net torque of these following forces about origin vec(F)_(1) = hat(i) - hat(j) acting at vec(r_(1))= 2hat(i) + hat(j), vec(F)_(2) = -hat(i) + hat(j) acting at vec(r_(2)) =hat(i) +2hat(j) & vec(F)_(3) = hat(i) +hat(j) acting at vec(r )_(3) = hat(i) - hat(j) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?