Home
Class 12
MATHS
vec a and vec b are two non-collinear un...

`vec a and vec b` are two non-collinear unit vectors `vec a,vec b, x vec a-y vec b` form a triangle.

A

`x = - 1, y =1 and |vec(a) + vec(b)| = 2 cos ((vec(a) wedge vec(b))/(2))`

B

`x = -1, y = 1 and cos (vec(a) wedge vec(b)) + |vec(a) + vec(b)| cos (vec(a) wedge - (vec(a) + vec(b)) = - 1`

C

`|vec(a) + vec(b)| = 2 cot ((vec(a) wedge vec(b))/(2)) cos ((vec(a) wedge vec(b))/(2)) and x = 1 , y = 1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

vec a and vec b are two non-collinear unit vectors vec a,vec b,xvec a-yvec b form a triangle.

vec a and vec b are two non-collinear unit vector, and vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b Then |vec v| is |vec u| b.|vec u|+|vec u*vec b| c.|vec u|+|vec u*vec a| d.none of these

If vec a and vec b are two non collinear unit vectors such that |vec a+vec b|=3, find (2vec a-5vec b)3vec a+vec b

If vec a and vec b are two non collinerar unit vectors and if | vec a+ vec b | = sqrt 3 , then find the value of (vec a-vec b). (2 vec a+ vec b) .

If vec a and vec b are two non-collinear unit vectors such that |vec a+vec b|=sqrt(3), find (2vec a-5vec b)*(3vec a+vec b)

If vec a, and vec b be two non-collinear unit vector such that vec a xx(vec a xxvec b)=(1)/(2)vec b, then find the angle between vec a, and vec b

Let vec a and vec b be two non-collinear unit vector.If vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b, then |vec v| is |vec u| b.|vec u|+|vec u*vec a|c.|vec u|+|vec u*vec b|d|vec u|+widehat u.|vec a+vec b|

If vec a and vec b are non-collinear unit vectors and |vec a+vec b|=sqrt(3) then (2vec a+5vec b)*(3vec a-vec b)=

vec a and vec b are two non-collinear vectors then |vec a+vec b+(vec a xxvec b)|^(2)+(1-vec a*vec b)^(2) is always equal to

If vec b and vec c are two non-collinear vectors such that vec a*(vec b+vec c)=4 and vec a xx(vec b xxvec c)=(x^(2)-2x+6)vec b+(sin y)vec c then the point (x,y) lies on