Home
Class 12
MATHS
The value(S) of alpha in [0,2pi] for w...

The value(S) of `alpha in [0,2pi]` for which vector `vec(a) = hat(i) + 3hat(j) + (sin 2 alpha) hat(k)` makes an obtuse angle with the z-axis and the vectors `vec(b) = (tan alpha) hat(i) - hat(j) + 2 sqrt(sin(alpha)/(2))hat(k) and vec(c) = (tan alpha)hat(i) (tan alpha)hat(j) - 3 sqrt(cosec(alpha)/(2))hat(k)` are

A

`tan^(-1) 3`

B

`pi - tan^(-1) 2`

C

`pi + tan^(-1)3`

D

`2pi - tan^(-1) 2`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

For any vector vec(alpha) , what is (vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k) equal to ?

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

Let alpha be the angle which the vector vec(V)=2hat(i)-hat(j)+2hat(k) makes with the z-axis,. Then, what is the value of sin alpha ?

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Let alpha in R and the three vectors a=alpha hat(i) + hat(j) +3hat(k) , b=2hat(i) +hat(j) -alpha hat(k) " and " c= alpha hat(i) -2hat(j) +3hat(k) . Then the set S={alpha: a,b " and c are coplanar"}

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :