Home
Class 12
MATHS
If vec (a) xx vec(b) = vec (c ) xx vec...

If `vec (a) xx vec(b) = vec (c ) xx vec(d) and vec (a) xx vec ( c) = vec (b) xx vec (d ) , ` show that ` vec(a) - vec (d)` is parallel `vec(b) - vec (c) ` , where to ` vec (a) != vec (d) and vec ( b) != vec (c ) `

A

collinear

B

linearly independent

C

perpendicular

D

parallel

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx vec(d)," show that " (vec(a)- vec(d)) " is parallel to " (vec(b)-vec(c)) , it being given that a !=d and b != c.

If vec a xxvec b = vec c xxvec d and vec a xxvec c = vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c where a!=d and b!=c

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d show that vec a-vec d is parallel to vec b-vec c, where vec a!=vec d and vec b!=vec c

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d show that vec a-vec d is parallel to vec b-vec c, where vec a!=vec d and vec b!=vec r

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If vec axvec b=vec cxvec d and vec axvec c=vec bxvec d show that vec a-vec d is parallel to vec b-vec c where vec a!=vec d and vec b!=vec c

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to