Home
Class 12
MATHS
Let vec(p) = 2hat(i) + 3hat(j) - ahat(k)...

Let `vec(p) = 2hat(i) + 3hat(j) - ahat(k), vec(q) = bhat(i) + 5hat(j) - hat(k)` and `vec(r) = hat(i) + hat(j) + 3hat(k)`. If `vec(p),vec(q), vec(r)` are coplanar and `vec(p).vec(q)` = 20 then a and b have the values.

A

–1, 3

B

9, 7

C

5, 5

D

13, 9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined process to find the values of \( a \) and \( b \) such that the vectors \( \vec{p}, \vec{q}, \vec{r} \) are coplanar and \( \vec{p} \cdot \vec{q} = 20 \). ### Step 1: Write down the vectors Given: \[ \vec{p} = 2\hat{i} + 3\hat{j} - a\hat{k} \] \[ \vec{q} = b\hat{i} + 5\hat{j} - \hat{k} \] \[ \vec{r} = \hat{i} + \hat{j} + 3\hat{k} \] ### Step 2: Use the coplanarity condition Vectors \( \vec{p}, \vec{q}, \vec{r} \) are coplanar if the determinant of the matrix formed by their components is zero: \[ \begin{vmatrix} 2 & 3 & -a \\ b & 5 & -1 \\ 1 & 1 & 3 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Expanding the determinant: \[ = 2 \begin{vmatrix} 5 & -1 \\ 1 & 3 \end{vmatrix} - 3 \begin{vmatrix} b & -1 \\ 1 & 3 \end{vmatrix} - a \begin{vmatrix} b & 5 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: \[ = 2(5 \cdot 3 - (-1) \cdot 1) - 3(b \cdot 3 - (-1) \cdot 1) - a(b \cdot 1 - 5 \cdot 1) \] \[ = 2(15 + 1) - 3(3b + 1) - a(b - 5) \] \[ = 32 - 9b - 3 - ab + 5a \] Setting the determinant to zero: \[ 29 - 9b + 5a - ab = 0 \quad \text{(Equation 1)} \] ### Step 4: Use the dot product condition The dot product condition gives us: \[ \vec{p} \cdot \vec{q} = 20 \] Calculating the dot product: \[ (2\hat{i} + 3\hat{j} - a\hat{k}) \cdot (b\hat{i} + 5\hat{j} - \hat{k}) = 2b + 15 + a = 20 \] Rearranging gives: \[ a + 2b = 5 \quad \text{(Equation 2)} \] ### Step 5: Substitute Equation 2 into Equation 1 From Equation 2, we can express \( a \): \[ a = 5 - 2b \] Substituting into Equation 1: \[ 29 - 9b + 5(5 - 2b) - b(5 - 2b) = 0 \] Expanding: \[ 29 - 9b + 25 - 10b - 5b + 2b^2 = 0 \] Combining like terms: \[ 2b^2 - 24b + 54 = 0 \] Dividing by 2: \[ b^2 - 12b + 27 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula: \[ b = \frac{-(-12) \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} \] \[ b = \frac{12 \pm \sqrt{144 - 108}}{2} \] \[ b = \frac{12 \pm \sqrt{36}}{2} \] \[ b = \frac{12 \pm 6}{2} \] Thus, we have: \[ b = 9 \quad \text{or} \quad b = 3 \] ### Step 7: Find corresponding values of \( a \) 1. If \( b = 9 \): \[ a = 5 - 2(9) = 5 - 18 = -13 \] 2. If \( b = 3 \): \[ a = 5 - 2(3) = 5 - 6 = -1 \] ### Final Values Thus, the pairs \( (a, b) \) are: 1. \( ( -13, 9 ) \) 2. \( ( -1, 3 ) \) ### Conclusion The values of \( a \) and \( b \) are \( a = -1 \) and \( b = 3 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -I)|21 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :