Home
Class 12
MATHS
If vec(r) = (hat(i) + 2hat(j) + 3hat(k))...

If `vec(r) = (hat(i) + 2hat(j) + 3hat(k)) + lambda(hat(i) - hat(j) + hat(k))` and `vec(r) = (hat(i) + 2hat(j) + 3hat(k)) + mu (hat(i) + hat(j) - hat(k))` are two lines, then find the equation of acute angle bisector of two lines.

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the acute angle bisector of the two lines given in vector form, we will follow these steps: ### Step 1: Identify the Direction Vectors The two lines are given as: 1. Line L1: \[ \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \] The direction vector \( \vec{a} \) for L1 is: \[ \vec{a} = \hat{i} - \hat{j} + \hat{k} \] 2. Line L2: \[ \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \mu(\hat{i} + \hat{j} - \hat{k}) \] The direction vector \( \vec{b} \) for L2 is: \[ \vec{b} = \hat{i} + \hat{j} - \hat{k} \] ### Step 2: Calculate the Dot Product and Magnitudes Next, we calculate the dot product \( \vec{a} \cdot \vec{b} \) and the magnitudes of \( \vec{a} \) and \( \vec{b} \). - The dot product: \[ \vec{a} \cdot \vec{b} = (1)(1) + (-1)(1) + (1)(-1) = 1 - 1 - 1 = -1 \] - The magnitudes: \[ |\vec{a}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] \[ |\vec{b}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \] ### Step 3: Calculate Cosine of the Angle Using the dot product and magnitudes, we find \( \cos \theta \): \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-1}{\sqrt{3} \cdot \sqrt{3}} = \frac{-1}{3} \] Since \( \cos \theta \) is negative, the angle \( \theta \) is obtuse. ### Step 4: Determine the Direction Vectors for the Bisectors The acute angle bisector direction vector \( \vec{u} \) is given by: \[ \vec{u} = \vec{a} - \vec{b} \] Calculating \( \vec{u} \): \[ \vec{u} = (\hat{i} - \hat{j} + \hat{k}) - (\hat{i} + \hat{j} - \hat{k}) = (1 - 1)\hat{i} + (-1 - 1)\hat{j} + (1 + 1)\hat{k} = 0\hat{i} - 2\hat{j} + 2\hat{k} \] Thus, \[ \vec{u} = -2\hat{j} + 2\hat{k} \] ### Step 5: Write the Equation of the Acute Angle Bisector The equation of the acute angle bisector can be expressed as: \[ \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \mu \cdot \vec{u} \] Substituting \( \vec{u} \): \[ \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \mu (-2\hat{j} + 2\hat{k}) \] ### Final Equation Thus, the final equation of the acute angle bisector is: \[ \vec{r} = \hat{i} + (2 - 2\mu)\hat{j} + (3 + 2\mu)\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r )=(hat(i)-2hat(j)) + lambda (2hat(i) -2hat(j)) " and " vec( r) =3hat(k) + mu (hat(i) + 2hat(j) -2hat(k)) Find angle

vec(r ) =(3hat(i) -4hat(j) +2hat(k)) + lambda (hat(i)+3hat(k)) " and " vec(r ) = 5hat(i) + mu (-hat(i) +hat(j) + hat(k)) Find angle between the lines .

Show that the lines vec(r ) =(hat(i) -hat(j)) +lambda (2hat(i)+ hat(k)) " and " vec(r ) =(2hat(i) -hat(j)) + mu (hat(i)+ hat(j) -hat(k)) do not intersect .

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

MOTION-VECTOR -EXERCISE - 3
  1. In a triangleOAB, E is the mid-point of BO and D is a point on AB such...

    Text Solution

    |

  2. Show that the point A ,B ,C with position vectors vec a-2 vec b...

    Text Solution

    |

  3. If vec(r) = (hat(i) + 2hat(j) + 3hat(k)) + lambda(hat(i) - hat(j) + ha...

    Text Solution

    |

  4. If the three successive vertices of a parallelogram have the position ...

    Text Solution

    |

  5. Given three points are A(-3,-2,0),B(3,-3,1)a n dC(5,0,2)dot Then find ...

    Text Solution

    |

  6. If the three successive vertices of a parallelogram have the position ...

    Text Solution

    |

  7. If hat(e(1)) and hat(e(2)) are two unit vectors such that vec(e(1))...

    Text Solution

    |

  8. For any two vectors veca and vecb, prove that ((veca )/(|vec a |^2)-...

    Text Solution

    |

  9. Given that vecx + 1/(vecp)^2 (vecp . vecx) vecp = vecq , show that vec...

    Text Solution

    |

  10. .Find out whether the following pairs of lines are parallel, non-paral...

    Text Solution

    |

  11. Find out whether the following pairs of lines are parallel, non parall...

    Text Solution

    |

  12. Find out whether the following pairs of lines are parallel, non parall...

    Text Solution

    |

  13. Let O A C B be a parallelogram with O at the origin andO C a diagonal....

    Text Solution

    |

  14. Find the shortest distance between the lines : vec(r) = (4hat(i) - ha...

    Text Solution

    |

  15. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  16. Find vector vec(v) which is coplanar with the vectors hat(i) + hat(j...

    Text Solution

    |

  17. Find the point R in which the line AB cuts the plane CDE, where positi...

    Text Solution

    |

  18. The position vectors of the angular points of a tetrahedron are A(3 ha...

    Text Solution

    |

  19. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  20. Examine for coplanarity of the following sets of points 3vec(a) + 2...

    Text Solution

    |