Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines : `vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k))` and `vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two lines given in vector form, we can follow these steps: ### Step 1: Identify the lines and their components The two lines are given as: 1. \( \vec{r_1} = (4\hat{i} - \hat{j}) + \lambda(\hat{i} + 2\hat{j} - 3\hat{k}) \) 2. \( \vec{r_2} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(2\hat{i} + 4\hat{j} - 5\hat{k}) \) From this, we can identify: - Point on line 1: \( \vec{a_1} = 4\hat{i} - \hat{j} \) - Direction vector of line 1: \( \vec{b_1} = \hat{i} + 2\hat{j} - 3\hat{k} \) - Point on line 2: \( \vec{a_2} = \hat{i} - \hat{j} + 2\hat{k} \) - Direction vector of line 2: \( \vec{b_2} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) ### Step 2: Calculate \( \vec{a_2} - \vec{a_1} \) Now, we calculate the vector from point \( \vec{a_1} \) to point \( \vec{a_2} \): \[ \vec{a_2} - \vec{a_1} = (\hat{i} - \hat{j} + 2\hat{k}) - (4\hat{i} - \hat{j}) = (1 - 4)\hat{i} + (0)\hat{j} + (2 - 0)\hat{k} = -3\hat{i} + 2\hat{k} \] ### Step 3: Calculate \( \vec{b_1} \times \vec{b_2} \) Next, we need to find the cross product of the direction vectors \( \vec{b_1} \) and \( \vec{b_2} \): \[ \vec{b_1} = \hat{i} + 2\hat{j} - 3\hat{k}, \quad \vec{b_2} = 2\hat{i} + 4\hat{j} - 5\hat{k} \] Using the determinant method: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & -3 \\ 4 & -5 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -3 \\ 2 & -5 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} \] Calculating each of these: \[ = \hat{i} (2 \cdot -5 - (-3) \cdot 4) - \hat{j} (1 \cdot -5 - (-3) \cdot 2) + \hat{k} (1 \cdot 4 - 2 \cdot 2) \] \[ = \hat{i} (-10 + 12) - \hat{j} (-5 + 6) + \hat{k} (4 - 4) \] \[ = 2\hat{i} - 1\hat{j} + 0\hat{k} = 2\hat{i} - \hat{j} \] ### Step 4: Calculate the magnitude of \( \vec{b_1} \times \vec{b_2} \) Now, we find the magnitude of the cross product: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(2)^2 + (-1)^2 + (0)^2} = \sqrt{4 + 1} = \sqrt{5} \] ### Step 5: Calculate the shortest distance Using the formula for the shortest distance \( d \) between two skew lines: \[ d = \frac{|(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1})|}{|\vec{b_1} \times \vec{b_2}|} \] Substituting the values: \[ (\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1}) = (2\hat{i} - \hat{j}) \cdot (-3\hat{i} + 2\hat{k}) = 2 \cdot (-3) + (-1) \cdot 0 + 0 \cdot 2 = -6 \] Thus, the distance becomes: \[ d = \frac{|-6|}{\sqrt{5}} = \frac{6}{\sqrt{5}} \] ### Final Answer The shortest distance between the two lines is \( \frac{6}{\sqrt{5}} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by: vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k)) and vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k)) .

Find the shortest distance between the lines L_(1) " and " L_(2) given by vec( r )=hat(i) +hat(j) +lambda(2hat(i)-hat(j)+hat(k)) " and " vec(r )=2hat(i) +hat(j)-hat(k) +mu (4hat(i) -2hat(j) +2hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r ) =(3hat(i) +hat(j)-2hat(k)) +lambda (hat(i)-hat(j)-2hat(k)) " and " vec(r ) =(2hat(i) -hat(j) -5hat(k)) + mu (3hat(i) -5hat(j) -4hat(k)) FInd angle between the lines

MOTION-VECTOR -EXERCISE - 3
  1. Find out whether the following pairs of lines are parallel, non parall...

    Text Solution

    |

  2. Let O A C B be a parallelogram with O at the origin andO C a diagonal....

    Text Solution

    |

  3. Find the shortest distance between the lines : vec(r) = (4hat(i) - ha...

    Text Solution

    |

  4. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  5. Find vector vec(v) which is coplanar with the vectors hat(i) + hat(j...

    Text Solution

    |

  6. Find the point R in which the line AB cuts the plane CDE, where positi...

    Text Solution

    |

  7. The position vectors of the angular points of a tetrahedron are A(3 ha...

    Text Solution

    |

  8. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  9. Examine for coplanarity of the following sets of points 3vec(a) + 2...

    Text Solution

    |

  10. The length of the edge of the regular tetrahedron DABC is 'a'. Point E...

    Text Solution

    |

  11. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  12. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  13. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  14. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  15. ABCD is a tetrahedron with pv's of its angular point as A(-5, 22, 5); ...

    Text Solution

    |

  16. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  17. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  18. Are the following set of vectors linearly independent? vec(a) = h...

    Text Solution

    |

  19. Are the following set of vectors linearly independent? vec(a) = - 2...

    Text Solution

    |

  20. the resultant of two vectors vec(a) & vec(b) is perpendicular to ve...

    Text Solution

    |