Home
Class 12
MATHS
Let vec(A) = 2hat(i) + hat(k), vec(B) = ...

Let `vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k)` and `vec(C) = 4hat(i) - 3hat(j) + 7hat(k)`. Determine a vector `vec(R)` satisfying `vec(R) xx vec(B) = vec(C) xx vec(B)` and `vec(R).vec(A) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \(\vec{R}\) that satisfies two conditions: 1. \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) 2. \(\vec{R} \cdot \vec{A} = 0\) Given: \[ \vec{A} = 2\hat{i} + \hat{k}, \quad \vec{B} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k} \] ### Step 1: Assume the form of \(\vec{R}\) Let: \[ \vec{R} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 2: Calculate \(\vec{R} \times \vec{B}\) Using the determinant method for the cross product: \[ \vec{R} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{R} \times \vec{B} = \hat{i}(y \cdot 1 - z \cdot 1) - \hat{j}(x \cdot 1 - z \cdot 1) + \hat{k}(x \cdot 1 - y \cdot 1) \] \[ = (y - z)\hat{i} - (x - z)\hat{j} + (x - y)\hat{k} \] ### Step 3: Calculate \(\vec{C} \times \vec{B}\) Now calculate \(\vec{C} \times \vec{B}\): \[ \vec{C} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -3 & 7 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{C} \times \vec{B} = \hat{i}((-3) \cdot 1 - 7 \cdot 1) - \hat{j}(4 \cdot 1 - 7 \cdot 1) + \hat{k}(4 \cdot 1 - (-3) \cdot 1) \] \[ = (-3 - 7)\hat{i} - (4 - 7)\hat{j} + (4 + 3)\hat{k} \] \[ = -10\hat{i} + 3\hat{j} + 7\hat{k} \] ### Step 4: Set the two cross products equal From the conditions, we have: \[ (y - z)\hat{i} - (x - z)\hat{j} + (x - y)\hat{k} = -10\hat{i} + 3\hat{j} + 7\hat{k} \] This gives us the following equations: 1. \(y - z = -10\) (1) 2. \(- (x - z) = 3\) or \(x - z = -3\) (2) 3. \(x - y = 7\) (3) ### Step 5: Solve the system of equations From equation (1): \[ y = z - 10 \] Substituting \(y\) in equation (3): \[ x - (z - 10) = 7 \implies x - z + 10 = 7 \implies x - z = -3 \quad \text{(which is consistent with equation (2))} \] Now substituting \(x\) in terms of \(z\): From equation (2): \[ x = z - 3 \] ### Step 6: Substitute \(x\) into the equation for \(y\) Substituting \(x\) into \(y\): \[ y = (z - 3) - 10 = z - 13 \] ### Step 7: Use the second condition \(\vec{R} \cdot \vec{A} = 0\) Now we need to satisfy \(\vec{R} \cdot \vec{A} = 0\): \[ (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} + \hat{k}) = 0 \] This gives: \[ 2x + z = 0 \implies z = -2x \] ### Step 8: Substitute \(z\) back into the equations Substituting \(z = -2x\) into \(y = z - 10\): \[ y = -2x - 10 \] Now substituting \(z = -2x\) into \(x = z - 3\): \[ x = -2x - 3 \implies 3x = -3 \implies x = -1 \] ### Step 9: Find \(y\) and \(z\) Now substituting \(x = -1\): \[ z = -2(-1) = 2 \] \[ y = -2(-1) - 10 = 2 - 10 = -8 \] ### Step 10: Write the final vector \(\vec{R}\) Thus, we have: \[ \vec{R} = -1\hat{i} - 8\hat{j} + 2\hat{k} \] ### Final Answer: \[ \vec{R} = -\hat{i} - 8\hat{j} + 2\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

MOTION-VECTOR -EXERCISE - 3
  1. Let O A C B be a parallelogram with O at the origin andO C a diagonal....

    Text Solution

    |

  2. Find the shortest distance between the lines : vec(r) = (4hat(i) - ha...

    Text Solution

    |

  3. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  4. Find vector vec(v) which is coplanar with the vectors hat(i) + hat(j...

    Text Solution

    |

  5. Find the point R in which the line AB cuts the plane CDE, where positi...

    Text Solution

    |

  6. The position vectors of the angular points of a tetrahedron are A(3 ha...

    Text Solution

    |

  7. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  8. Examine for coplanarity of the following sets of points 3vec(a) + 2...

    Text Solution

    |

  9. The length of the edge of the regular tetrahedron DABC is 'a'. Point E...

    Text Solution

    |

  10. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  11. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  12. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  13. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  14. ABCD is a tetrahedron with pv's of its angular point as A(-5, 22, 5); ...

    Text Solution

    |

  15. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  16. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  17. Are the following set of vectors linearly independent? vec(a) = h...

    Text Solution

    |

  18. Are the following set of vectors linearly independent? vec(a) = - 2...

    Text Solution

    |

  19. the resultant of two vectors vec(a) & vec(b) is perpendicular to ve...

    Text Solution

    |

  20. Given three points on the xy plane on O(0, 0), A(1, 0) and B(–1, 0). P...

    Text Solution

    |