Home
Class 12
MATHS
Find vector vec(v) which is coplanar w...

Find vector `vec(v)` which is coplanar with the vectors `hat(i) + hat(j) - 2hat(k)` and `hat(i) - 2hat(j) + hat(k)` and is orthogonal to the vector `-2hat(j) + hat(k)` . It is given that the projection of `vec(v)` along the vector `hat(i) + hat(j) + hat(k)` is equal to `6 sqrt(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{v}\) that is coplanar with the vectors \(\hat{i} + \hat{j} - 2\hat{k}\) and \(\hat{i} - 2\hat{j} + \hat{k}\), orthogonal to the vector \(-2\hat{j} + \hat{k}\), and has a projection of \(6\sqrt{3}\) along the vector \(\hat{i} + \hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Define the vectors Let: \[ \vec{a} = \hat{i} + \hat{j} - 2\hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{c} = -2\hat{j} + \hat{k} \] ### Step 2: Find the cross product of \(\vec{a}\) and \(\vec{b}\) To find a vector that is coplanar with \(\vec{a}\) and \(\vec{b}\), we can use the cross product: \[ \vec{n} = \vec{a} \times \vec{b} \] Calculating \(\vec{n}\): \[ \vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{n} = \hat{i} \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} = 1 \cdot 1 - (-2) \cdot (-2) = 1 - 4 = -3 \] \[ \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - (-2) \cdot 1 = 1 + 2 = 3 \] \[ \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = 1 \cdot (-2) - 1 \cdot 1 = -2 - 1 = -3 \] Substituting back: \[ \vec{n} = -3\hat{i} - 3\hat{j} - 3\hat{k} = -3(\hat{i} + \hat{j} + \hat{k}) \] ### Step 3: Express \(\vec{v}\) in terms of \(\vec{n}\) Since \(\vec{v}\) is coplanar with \(\vec{a}\) and \(\vec{b}\), we can express \(\vec{v}\) as: \[ \vec{v} = \alpha \vec{n} \] where \(\alpha\) is a scalar. ### Step 4: Orthogonality condition For \(\vec{v}\) to be orthogonal to \(\vec{c}\): \[ \vec{v} \cdot \vec{c} = 0 \] Substituting \(\vec{v}\): \[ \alpha(-3(\hat{i} + \hat{j} + \hat{k})) \cdot (-2\hat{j} + \hat{k}) = 0 \] Calculating the dot product: \[ -3\alpha \left(0 + (-2) + 1\right) = 0 \] This simplifies to: \[ -3\alpha(-1) = 0 \implies \alpha \neq 0 \] ### Step 5: Projection condition The projection of \(\vec{v}\) along \(\hat{i} + \hat{j} + \hat{k}\) is given as \(6\sqrt{3}\): \[ \text{Projection} = \frac{\vec{v} \cdot (\hat{i} + \hat{j} + \hat{k})}{|\hat{i} + \hat{j} + \hat{k}|} \] Calculating the magnitude: \[ |\hat{i} + \hat{j} + \hat{k}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] Thus: \[ \vec{v} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6\sqrt{3} \] Substituting \(\vec{v}\): \[ \alpha(-3(\hat{i} + \hat{j} + \hat{k})) \cdot (\hat{i} + \hat{j} + \hat{k}) = 6\sqrt{3} \] Calculating the dot product: \[ -3\alpha(3) = 6\sqrt{3} \implies -9\alpha = 6\sqrt{3} \implies \alpha = -\frac{2\sqrt{3}}{3} \] ### Step 6: Final vector \(\vec{v}\) Substituting \(\alpha\) back: \[ \vec{v} = -\frac{2\sqrt{3}}{3}(-3(\hat{i} + \hat{j} + \hat{k})) = 2\sqrt{3}(\hat{i} + \hat{j} + \hat{k}) = 2\sqrt{3}\hat{i} + 2\sqrt{3}\hat{j} + 2\sqrt{3}\hat{k} \] ### Final Answer \[ \vec{v} = 2\sqrt{3}(\hat{i} + \hat{j} + \hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k) are perpendicular to the vector hat(i)+hat(j)+hat(k) is are

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

What is the projection of the vector hat(i)-2 hat(j) + hat(k) on the vector 4hat(i) - 4hat(j)+ 7hat(k) ?

Write the projection of vector hat i+hat j+hat k along the vector hat j.

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

What is the projection of the vector hat(i)-2hat(j)-hat(k) on the vector 4hat(i)-4hat(j)+7hat(k) ?

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .

MOTION-VECTOR -EXERCISE - 3
  1. Find the shortest distance between the lines : vec(r) = (4hat(i) - ha...

    Text Solution

    |

  2. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  3. Find vector vec(v) which is coplanar with the vectors hat(i) + hat(j...

    Text Solution

    |

  4. Find the point R in which the line AB cuts the plane CDE, where positi...

    Text Solution

    |

  5. The position vectors of the angular points of a tetrahedron are A(3 ha...

    Text Solution

    |

  6. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  7. Examine for coplanarity of the following sets of points 3vec(a) + 2...

    Text Solution

    |

  8. The length of the edge of the regular tetrahedron DABC is 'a'. Point E...

    Text Solution

    |

  9. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  10. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  11. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  12. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  13. ABCD is a tetrahedron with pv's of its angular point as A(-5, 22, 5); ...

    Text Solution

    |

  14. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  15. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  16. Are the following set of vectors linearly independent? vec(a) = h...

    Text Solution

    |

  17. Are the following set of vectors linearly independent? vec(a) = - 2...

    Text Solution

    |

  18. the resultant of two vectors vec(a) & vec(b) is perpendicular to ve...

    Text Solution

    |

  19. Given three points on the xy plane on O(0, 0), A(1, 0) and B(–1, 0). P...

    Text Solution

    |

  20. Vector vec O A= hat i+2 hat j+2 hat k turns through a right angle ...

    Text Solution

    |