Home
Class 12
MATHS
Let vec(a) = hat(i) + 2hat(j) + 3hat(k)...

Let `vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k)` and `vec(d) = 3hat(i) - hat(j) - 2hat(k)`, then .
If `vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c)`, then find value of p,q are r.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( p \), \( q \), and \( r \) in the equation: \[ \vec{a} \times (\vec{b} \times \vec{c}) = p\vec{a} + q\vec{b} + r\vec{c} \] where: - \(\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{b} = 2\hat{i} + \hat{j} + \hat{k}\) - \(\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}\) ### Step 1: Use the Vector Triple Product Identity We can use the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \] In our case, let \(\vec{u} = \vec{a}\), \(\vec{v} = \vec{b}\), and \(\vec{w} = \vec{c}\). Thus, we have: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \] ### Step 2: Calculate \( \vec{a} \cdot \vec{c} \) Now we need to calculate the dot product \( \vec{a} \cdot \vec{c} \): \[ \vec{a} \cdot \vec{c} = (1)(3) + (2)(2) + (3)(1) = 3 + 4 + 3 = 10 \] ### Step 3: Calculate \( \vec{a} \cdot \vec{b} \) Next, we calculate the dot product \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (1)(2) + (2)(1) + (3)(1) = 2 + 2 + 3 = 7 \] ### Step 4: Substitute Back into the Equation Now we can substitute these values back into our equation: \[ \vec{a} \times (\vec{b} \times \vec{c}) = 10\vec{b} - 7\vec{c} \] This can be rewritten in the form: \[ \vec{a} \times (\vec{b} \times \vec{c}) = 0\vec{a} + 10\vec{b} - 7\vec{c} \] ### Step 5: Identify the Coefficients From the equation, we can identify the coefficients: - \( p = 0 \) - \( q = 10 \) - \( r = -7 \) ### Final Values Thus, the values are: \[ p = 0, \quad q = 10, \quad r = -7 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

MOTION-VECTOR -EXERCISE - 3
  1. The position vectors of the angular points of a tetrahedron are A(3 ha...

    Text Solution

    |

  2. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  3. Examine for coplanarity of the following sets of points 3vec(a) + 2...

    Text Solution

    |

  4. The length of the edge of the regular tetrahedron DABC is 'a'. Point E...

    Text Solution

    |

  5. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  6. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  7. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  8. The position vectors of the four angular points of a tetrahedron ar...

    Text Solution

    |

  9. ABCD is a tetrahedron with pv's of its angular point as A(-5, 22, 5); ...

    Text Solution

    |

  10. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  11. Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) ...

    Text Solution

    |

  12. Are the following set of vectors linearly independent? vec(a) = h...

    Text Solution

    |

  13. Are the following set of vectors linearly independent? vec(a) = - 2...

    Text Solution

    |

  14. the resultant of two vectors vec(a) & vec(b) is perpendicular to ve...

    Text Solution

    |

  15. Given three points on the xy plane on O(0, 0), A(1, 0) and B(–1, 0). P...

    Text Solution

    |

  16. Vector vec O A= hat i+2 hat j+2 hat k turns through a right angle ...

    Text Solution

    |

  17. If p vec x +( vec x xx vec a )= vec b ;(p!=0) prove that & vecx...

    Text Solution

    |

  18. Given two orthogonal vectors vec(A) and vec(B) each of length unity ...

    Text Solution

    |

  19. Given two orthogonal vectors vec(A) and vec(B) each of length unity ...

    Text Solution

    |

  20. Which of the following statements is false ?

    Text Solution

    |