Home
Class 12
MATHS
If [vec(a) vec(b) vec(c)]=4 then [vec(a)...

If `[vec(a) vec(b) vec(c)]=4` then `[vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)]`=

A

4

B

2

C

8

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \([ \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} ]\) given that \([ \vec{a}, \vec{b}, \vec{c} ] = 4\). ### Step-by-step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) is defined as the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). It can also be expressed in terms of the cross product: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] 2. **Using the Identity**: There is a known identity that relates the scalar triple product and the cross products: \[ [ \vec{a}, \vec{b}, \vec{c} ]^2 = [ \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} ] \] This means that the scalar triple product squared is equal to the determinant of the matrix formed by the cross products of the vectors. 3. **Substituting the Given Value**: From the problem, we know that: \[ [ \vec{a}, \vec{b}, \vec{c} ] = 4 \] Therefore, we can substitute this value into the identity: \[ [ \vec{a}, \vec{b}, \vec{c} ]^2 = 4^2 = 16 \] 4. **Conclusion**: Thus, we find that: \[ [ \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} ] = 16 \] ### Final Answer: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals

if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a) = lamda (vec(b) xx vec(c )) then what is the value of lamda ?

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a) + vec(b)+vec(c)=vec(0) , then which of the following is/are correct? 1. vec(a), vec(b), vec(c) are coplanar. 2. vec(a)xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) Select the correct answer using the code given below.

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

If vec(c) =2lambda (vec(a)timesvec(b))+3mu (vec(b)times vec(a)),vec(a)xx vec(b) ne0,vec(c).(vec(a)times vec(b))=0 then

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

MOTION-VECTOR -EXERCISE - 4 ( LEVEL -I)
  1. veca,vecb and vecc are three non-zero vectors, no two of which are col...

    Text Solution

    |

  2. If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c...

    Text Solution

    |

  3. If vec(c) =2lambda (vec(a)timesvec(b))+3mu (vec(b)times vec(a)),vec(a)...

    Text Solution

    |

  4. If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + h...

    Text Solution

    |

  5. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  6. if vecu=hati+hatj , vecv=hati-hatj and vecw=hati+2hatj+3hatk.if vecnis...

    Text Solution

    |

  7. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat i...

    Text Solution

    |

  8. If the vector vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat...

    Text Solution

    |

  9. The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + ve...

    Text Solution

    |

  10. Consider points A, B, C and D with position vectors 7hat(i) - 4hat(j)...

    Text Solution

    |

  11. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  12. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. For any vector vec(a) |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |h...

    Text Solution

    |

  15. If C is the mid-point of AB and P is any point outside AB, then

    Text Solution

    |

  16. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  17. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  18. ABC is triangle, right angled at A. The resultant of the forces acting...

    Text Solution

    |

  19. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  20. If vec(u) and vec(v) are unit vectors and theta is the actue angle...

    Text Solution

    |