Home
Class 12
MATHS
If vec(c) =2lambda (vec(a)timesvec(b))+3...

If `vec(c) =2lambda (vec(a)timesvec(b))+3mu (vec(b)times vec(a)),vec(a)xx vec(b) ne0,vec(c).(vec(a)times vec(b))=0 `then

A

`lambda = 3 mu`

B

`2lambda = 3 mu`

C

`lambda + mu = 0 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given vector equation and conditions. ### Step 1: Write down the given equation for vector \( \vec{c} \) We have: \[ \vec{c} = 2\lambda (\vec{a} \times \vec{b}) + 3\mu (\vec{b} \times \vec{a}) \] Using the property of cross products, we know that: \[ \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \] Thus, we can rewrite \( \vec{c} \) as: \[ \vec{c} = 2\lambda (\vec{a} \times \vec{b}) - 3\mu (\vec{a} \times \vec{b}) = (2\lambda - 3\mu)(\vec{a} \times \vec{b}) \] ### Step 2: Use the condition \( \vec{c} \cdot (\vec{a} \times \vec{b}) = 0 \) We know that: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = 0 \] Substituting our expression for \( \vec{c} \): \[ ((2\lambda - 3\mu)(\vec{a} \times \vec{b})) \cdot (\vec{a} \times \vec{b}) = 0 \] ### Step 3: Simplify the dot product The dot product \( (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \) gives us the square of the magnitude of \( \vec{a} \times \vec{b} \): \[ |\vec{a} \times \vec{b}|^2 \cdot (2\lambda - 3\mu) = 0 \] ### Step 4: Analyze the equation Since we know that \( \vec{a} \times \vec{b} \neq 0 \), it follows that: \[ |\vec{a} \times \vec{b}|^2 \neq 0 \] Thus, the only way for the product to equal zero is if: \[ 2\lambda - 3\mu = 0 \] ### Step 5: Solve for the relationship between \( \lambda \) and \( \mu \) From the equation \( 2\lambda - 3\mu = 0 \), we can rearrange it to find: \[ 2\lambda = 3\mu \] This gives us the relationship between \( \lambda \) and \( \mu \). ### Final Answer The relationship derived from the given conditions is: \[ \boxed{2\lambda = 3\mu} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

Prove that for any two vectors vec(a) and vec(b), vec(a).(vec(a)xx vec(b))=0 . Is vec(b).(vec(a)xx vec(b))=0 ?

(vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifies to

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b). vec(b')+vec(c ). vec(c')=3 .

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

MOTION-VECTOR -EXERCISE - 4 ( LEVEL -I)
  1. veca,vecb and vecc are three non-zero vectors, no two of which are col...

    Text Solution

    |

  2. If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c...

    Text Solution

    |

  3. If vec(c) =2lambda (vec(a)timesvec(b))+3mu (vec(b)times vec(a)),vec(a)...

    Text Solution

    |

  4. If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + h...

    Text Solution

    |

  5. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  6. if vecu=hati+hatj , vecv=hati-hatj and vecw=hati+2hatj+3hatk.if vecnis...

    Text Solution

    |

  7. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat i...

    Text Solution

    |

  8. If the vector vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat...

    Text Solution

    |

  9. The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + ve...

    Text Solution

    |

  10. Consider points A, B, C and D with position vectors 7hat(i) - 4hat(j)...

    Text Solution

    |

  11. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  12. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. For any vector vec(a) |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |h...

    Text Solution

    |

  15. If C is the mid-point of AB and P is any point outside AB, then

    Text Solution

    |

  16. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  17. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  18. ABC is triangle, right angled at A. The resultant of the forces acting...

    Text Solution

    |

  19. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  20. If vec(u) and vec(v) are unit vectors and theta is the actue angle...

    Text Solution

    |