Home
Class 12
MATHS
If vec(a) = 2hat(i) + hat(j) + 2hat(k), ...

If `vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k)`, then projection of `vec(a)` on `vec(b)` is

A

`3hat(i) - 3hat(j) + hat(k)`

B

`(9(5hat(i) - 3hat(j) + hat(k))/(7))`

C

`((5hat(i) - 3hat(j) - hat(k)))/(35)`

D

`9(5hat(i) - 3hat(j) + hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **a** on vector **b**, we can use the formula for the projection of one vector onto another: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] Where: - \(\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}\) - \(\vec{b} = 5\hat{i} - 3\hat{j} + \hat{k}\) ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] Substituting the values: \[ \vec{a} \cdot \vec{b} = (2)(5) + (1)(-3) + (2)(1) \] Calculating this: \[ = 10 - 3 + 2 = 9 \] ### Step 2: Calculate the magnitude of \(\vec{b}\) The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] Substituting the values: \[ |\vec{b}| = \sqrt{5^2 + (-3)^2 + 1^2} \] Calculating this: \[ = \sqrt{25 + 9 + 1} = \sqrt{35} \] ### Step 3: Calculate \(|\vec{b}|^2\) Now, we need \(|\vec{b}|^2\): \[ |\vec{b}|^2 = 35 \] ### Step 4: Substitute into the projection formula Now we can substitute the values into the projection formula: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} = \frac{9}{35} \vec{b} \] Substituting \(\vec{b}\): \[ = \frac{9}{35} (5\hat{i} - 3\hat{j} + \hat{k}) \] ### Step 5: Distributing the scalar Distributing \(\frac{9}{35}\): \[ = \left(\frac{9 \cdot 5}{35}\right) \hat{i} + \left(\frac{9 \cdot (-3)}{35}\right) \hat{j} + \left(\frac{9 \cdot 1}{35}\right) \hat{k} \] Calculating each component: \[ = \frac{45}{35} \hat{i} - \frac{27}{35} \hat{j} + \frac{9}{35} \hat{k} \] ### Final Result Thus, the projection of vector **a** on vector **b** is: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{9}{35} \hat{i} - \frac{27}{35} \hat{j} + \frac{9}{35} \hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

MOTION-VECTOR -EXERCISE - 4 ( LEVEL -I)
  1. If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c...

    Text Solution

    |

  2. If vec(c) =2lambda (vec(a)timesvec(b))+3mu (vec(b)times vec(a)),vec(a)...

    Text Solution

    |

  3. If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + h...

    Text Solution

    |

  4. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  5. if vecu=hati+hatj , vecv=hati-hatj and vecw=hati+2hatj+3hatk.if vecnis...

    Text Solution

    |

  6. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat i...

    Text Solution

    |

  7. If the vector vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat...

    Text Solution

    |

  8. The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + ve...

    Text Solution

    |

  9. Consider points A, B, C and D with position vectors 7hat(i) - 4hat(j)...

    Text Solution

    |

  10. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  11. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  12. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  13. For any vector vec(a) |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |h...

    Text Solution

    |

  14. If C is the mid-point of AB and P is any point outside AB, then

    Text Solution

    |

  15. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  16. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  17. ABC is triangle, right angled at A. The resultant of the forces acting...

    Text Solution

    |

  18. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  19. If vec(u) and vec(v) are unit vectors and theta is the actue angle...

    Text Solution

    |

  20. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat...

    Text Solution

    |