Home
Class 12
MATHS
Consider points A, B, C and D with posit...

Consider points A, B, C and D with position vectors ` 7hat(i) - 4hat(j) + 7hat(k),hat(i) - 6hat(j) + 10hat(k), - hat(i) -3hat(j) + 4hat(k)` and `5hat(i) - hat(j) + 5hat(k)` respectively. Then ABCD is a -

A

parallelogram but not a rhombus

B

square

C

rhombus

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the quadrilateral formed by points A, B, C, and D with the given position vectors, we will follow these steps: ### Step 1: Identify the Position Vectors The position vectors of points A, B, C, and D are: - A: \( \vec{A} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) - B: \( \vec{B} = \hat{i} - 6\hat{j} + 10\hat{k} \) - C: \( \vec{C} = -\hat{i} - 3\hat{j} + 4\hat{k} \) - D: \( \vec{D} = 5\hat{i} - \hat{j} + 5\hat{k} \) ### Step 2: Convert Position Vectors to Coordinates We can express the position vectors in coordinate form: - A(7, -4, 7) - B(1, -6, 10) - C(-1, -3, 4) - D(5, -1, 5) ### Step 3: Calculate the Lengths of the Sides To determine the nature of the quadrilateral, we will calculate the lengths of the sides AB, BC, CD, and DA using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] #### Length of AB: \[ AB = \sqrt{(1 - 7)^2 + (-6 + 4)^2 + (10 - 7)^2} = \sqrt{(-6)^2 + (-2)^2 + (3)^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7 \] #### Length of BC: \[ BC = \sqrt{(-1 - 1)^2 + (-3 + 6)^2 + (4 - 10)^2} = \sqrt{(-2)^2 + (3)^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] #### Length of CD: \[ CD = \sqrt{(5 + 1)^2 + (-1 + 3)^2 + (5 - 4)^2} = \sqrt{(6)^2 + (2)^2 + (1)^2} = \sqrt{36 + 4 + 1} = \sqrt{41} \] #### Length of DA: \[ DA = \sqrt{(7 - 5)^2 + (-4 + 1)^2 + (7 - 5)^2} = \sqrt{(2)^2 + (-3)^2 + (2)^2} = \sqrt{4 + 9 + 4} = \sqrt{17} \] ### Step 4: Analyze the Lengths From the calculations: - \( AB = 7 \) - \( BC = 7 \) - \( CD = \sqrt{41} \) - \( DA = \sqrt{17} \) Since not all sides are equal, ABCD cannot be a rhombus or a square. ### Step 5: Check for Parallelogram To check if ABCD is a parallelogram, we need to see if opposite sides are equal: - \( AB \neq CD \) - \( BC \neq DA \) Since the opposite sides are not equal, ABCD is not a parallelogram. ### Conclusion Since ABCD does not satisfy the conditions for being a parallelogram, rhombus, or square, we conclude that ABCD is none of these.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

Consider A,B,C and D with position vectors 7hat i-4hat j+7hat k,hat i-6hat j+10hat k,-hat i-3hat j+4hat k and 5hat i-hat j+5hat k respectively.Then ABCD is a

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Show that the following vectors are coplanar : 3hat(i)-2hat(j)+4hat(k), 6hat(i)+3hat(j)+2hat(k), 5hat(i)+7hat(j)+3hat(k) and 2hat(i)+2hat(j)+5hat(k) .

If 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) and -4hat(i)+9hat(j)+6hat(k) are vertices of a triangle, then it is

MOTION-VECTOR -EXERCISE - 4 ( LEVEL -I)
  1. If the vector vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat...

    Text Solution

    |

  2. The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + ve...

    Text Solution

    |

  3. Consider points A, B, C and D with position vectors 7hat(i) - 4hat(j)...

    Text Solution

    |

  4. If vec u , vec va n d vec w are three non-cop0lanar vectors, then ...

    Text Solution

    |

  5. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  6. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  7. For any vector vec(a) |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |h...

    Text Solution

    |

  8. If C is the mid-point of AB and P is any point outside AB, then

    Text Solution

    |

  9. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  10. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  11. ABC is triangle, right angled at A. The resultant of the forces acting...

    Text Solution

    |

  12. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  13. If vec(u) and vec(v) are unit vectors and theta is the actue angle...

    Text Solution

    |

  14. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat...

    Text Solution

    |

  15. The non-zero vectors are vec a,vec b and vec c are related by vec a= ...

    Text Solution

    |

  16. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  17. If vec u ,"" vec v , vec w are noncoplanar vectors and p, q are re...

    Text Solution

    |

  18. Let veca=hatj-hatk and vecc=hati-hatj-hatk. Then the vector vecb satis...

    Text Solution

    |

  19. If the vectors veca=hati-hatj+2hatk, vecb=2hati+4hatj+hatk and vecc=la...

    Text Solution

    |

  20. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |