Home
Class 12
MATHS
Let vec(a) = hat(i) + hat(j) + hat(k), v...

Let `vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k)` and `vec(c) = xhat(i) + (x-2)hat(j) - hat(k)`. If the vector `vec(c)` lies in the plane of `vec(a)` & `vec(b)`, then x equals

A

0

B

1

C

`-4`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( x \) such that the vector \( \vec{c} \) lies in the plane formed by the vectors \( \vec{a} \) and \( \vec{b} \). ### Step-by-step Solution: 1. **Identify the Vectors:** - Given vectors are: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = x\hat{i} + (x-2)\hat{j} - \hat{k} \] 2. **Condition for Coplanarity:** - Vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar if the determinant of the matrix formed by their components is zero: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} = 0 \] 3. **Calculate the Determinant:** - We can calculate the determinant using the formula: \[ \text{Det} = 1 \cdot \begin{vmatrix} -1 & 2 \\ x-2 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 2 \\ x & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1 \\ x & x-2 \end{vmatrix} \] - Calculate each of the 2x2 determinants: - First determinant: \[ \begin{vmatrix} -1 & 2 \\ x-2 & -1 \end{vmatrix} = (-1)(-1) - (2)(x-2) = 1 - 2x + 4 = 5 - 2x \] - Second determinant: \[ \begin{vmatrix} 1 & 2 \\ x & -1 \end{vmatrix} = (1)(-1) - (2)(x) = -1 - 2x = -1 - 2x \] - Third determinant: \[ \begin{vmatrix} 1 & -1 \\ x & x-2 \end{vmatrix} = (1)(x-2) - (-1)(x) = x - 2 + x = 2x - 2 \] - Combine these results: \[ \text{Det} = 1(5 - 2x) - 1(-1 - 2x) + 1(2x - 2) \] \[ = 5 - 2x + 1 + 2x + 2x - 2 \] \[ = 5 + 1 - 2 + 2x - 2x = 4 \] 4. **Set the Determinant to Zero:** - Set the determinant equal to zero: \[ 4 = 0 \] - This is incorrect; let's re-evaluate the determinant calculation. 5. **Re-evaluate the Determinant:** - The correct determinant calculation should yield: \[ 5 - 2x + 1 + 2x + 2x - 2 = 0 \] \[ 4 + 2x = 0 \] \[ 2x = -4 \] \[ x = -2 \] ### Final Answer: Thus, the value of \( x \) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 3|38 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Given vec(a) = xhat(i) + yhat(j) + 2hat(k) , vec(b) = hat(i) - hat(j) + hat(k), hat(c) = hat(i) + 2hat(j) , (vec(a) wedge vec(b)) = pi//2 , vec(a).vec(c) = 4 then

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

MOTION-VECTOR -EXERCISE - 4 ( LEVEL -I)
  1. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  2. ABC is triangle, right angled at A. The resultant of the forces acting...

    Text Solution

    |

  3. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  4. If vec(u) and vec(v) are unit vectors and theta is the actue angle...

    Text Solution

    |

  5. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat...

    Text Solution

    |

  6. The non-zero vectors are vec a,vec b and vec c are related by vec a= ...

    Text Solution

    |

  7. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  8. If vec u ,"" vec v , vec w are noncoplanar vectors and p, q are re...

    Text Solution

    |

  9. Let veca=hatj-hatk and vecc=hati-hatj-hatk. Then the vector vecb satis...

    Text Solution

    |

  10. If the vectors veca=hati-hatj+2hatk, vecb=2hati+4hatj+hatk and vecc=la...

    Text Solution

    |

  11. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  12. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  13. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |

  14. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  15. If [(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2...

    Text Solution

    |

  16. The angle between the lines whose direction cosines satisfy the equ...

    Text Solution

    |

  17. Let veca, vecb and vecc be non-zero vectors such that no two are colli...

    Text Solution

    |

  18. Let veca, vecb and vecc be three unit vectors such that vecaxx(vecbxxv...

    Text Solution

    |

  19. Let vecu be a vector coplanar with the vectors veca = 2hati + 3hatj - ...

    Text Solution

    |

  20. The length of the projection of the line segment joining the points (5...

    Text Solution

    |