Home
Class 12
MATHS
If veca=veci+vecj+veck, veca.vecb=1 and ...

If `veca=veci+vecj+veck, veca.vecb=1 and vecaxxvecb=vecj-veck,` then `vecb` equals

A

`hati`

B

`hati-hatj+hatk`

C

`2hatj-hatk`

D

`2hati`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{b} \) given the conditions on the vectors \( \vec{a} \) and \( \vec{b} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \vec{i} + \vec{j} + \vec{k} \] Let: \[ \vec{b} = x \vec{i} + y \vec{j} + z \vec{k} \] ### Step 2: Use the dot product condition We know that: \[ \vec{a} \cdot \vec{b} = 1 \] Calculating the dot product: \[ (\vec{i} + \vec{j} + \vec{k}) \cdot (x \vec{i} + y \vec{j} + z \vec{k}) = x + y + z = 1 \] So we have our first equation: \[ x + y + z = 1 \quad \text{(1)} \] ### Step 3: Use the cross product condition We also know: \[ \vec{a} \times \vec{b} = \vec{j} - \vec{k} \] Calculating the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ = \vec{i} \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \vec{i} (1 \cdot z - 1 \cdot y) - \vec{j} (1 \cdot z - 1 \cdot x) + \vec{k} (1 \cdot y - 1 \cdot x) \] This simplifies to: \[ = (z - y) \vec{i} - (z - x) \vec{j} + (y - x) \vec{k} \] Setting this equal to \( \vec{j} - \vec{k} \): \[ (z - y) \vec{i} - (z - x) \vec{j} + (y - x) \vec{k} = \vec{j} - \vec{k} \] ### Step 4: Compare coefficients From the equation above, we can compare coefficients: 1. Coefficient of \( \vec{i} \): \( z - y = 0 \) (2) 2. Coefficient of \( \vec{j} \): \( -(z - x) = 1 \) or \( z - x = -1 \) (3) 3. Coefficient of \( \vec{k} \): \( y - x = -1 \) (4) ### Step 5: Solve the system of equations From equation (2): \[ z = y \quad \text{(5)} \] Substituting (5) into (3): \[ y - x = -1 \implies y = x - 1 \quad \text{(6)} \] Substituting (6) into (1): \[ x + (x - 1) + y = 1 \implies x + (x - 1) + (x - 1) = 1 \] This simplifies to: \[ 3x - 2 = 1 \implies 3x = 3 \implies x = 1 \] Now substituting \( x = 1 \) into (6): \[ y = 1 - 1 = 0 \] And substituting \( y = 0 \) into (5): \[ z = 0 \] ### Step 6: Write the final vector \( \vec{b} \) Thus, we have: \[ \vec{b} = 1 \vec{i} + 0 \vec{j} + 0 \vec{k} = \vec{i} \] ### Final Answer \[ \vec{b} = \vec{i} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If veca=veci-2vecj+veck, vecb=veci+vecj+veck and vecc=veci+2vecj+veck then show that veca.(vecbxxvecc)=(vecaxxvecb).vecc.

Find veca.vecb if |veca|2, |vecb|=5,a and |vecaxxvecb|=8

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

Examine whether the vectors veca=2veci+3vecj+2veck, vecb=veci-vecj+2veck and vecc=3veci+2vecj-4veck form a left handed or a righat handed system.

If veca=2veci-3vecj+2veck and vecb=veci+2vecj+veck , find (i) veca.vecb , (ii) vecaxxvecb and (iii) vecbxxveca

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

MOTION-VECTOR -EXERCISE - 4 ( LEVEL-II)
  1. The value of a so that the volume of the paralelopiped formed by hati+...

    Text Solution

    |

  2. A unit vector int eh plane of the vectors 2hati+hatj+hatk, hati-hatj+h...

    Text Solution

    |

  3. If veca=veci+vecj+veck, veca.vecb=1 and vecaxxvecb=vecj-veck, then vec...

    Text Solution

    |

  4. If veca,vecb,vecc,vecd are four distinct vectors satisfying the condit...

    Text Solution

    |

  5. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hathatj-h...

    Text Solution

    |

  6. Let vecA be a vector parallel to the of intersection of planes P1 and ...

    Text Solution

    |

  7. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  8. Let veca, vecb ,vecc be unit vetors such that veca + vecb + vecc = ve...

    Text Solution

    |

  9. Assertion: vec(PQ)xx(vec(RS)+vec(ST))!=0, Reason : vec(PQ)xxvec(RS)=ve...

    Text Solution

    |

  10. The edges of a parallelopiped are of unit length and are parallel to n...

    Text Solution

    |

  11. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  12. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  13. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca=(hati-23hatj)/(sqr...

    Text Solution

    |

  15. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  16. The vectors which is/are coplanar with vectors hati+hatj+2hatk and hat...

    Text Solution

    |

  17. Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be th...

    Text Solution

    |

  18. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |

  19. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |

  20. Let vecx,vecy and vecz be three vector each of magnitude sqrt(2) an...

    Text Solution

    |