Home
Class 12
MATHS
If veca and vecb are vectors in space gi...

If `veca` and `vecb` are vectors in space given by `veca=(hati-23hatj)/(sqrt(5))`
`vecb=(2hati+hatj+3hatk)/(sqrt(14))` then the value of `(2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)]`, is

Promotional Banner

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt(5)) vecb=(2hati+hatj+3hatk)/(sqrt(14)) then the value of (2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)] , is

If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14 then find the value of (2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]

If veca=(3hati-hatj)/(sqrt(10)) and vecb=(hati+3hatj+hatk)/(sqrt(11)), then the value of (2veca+vecb)".[(veca xx vecb)xx(veca-3vecb)]

If veca=1/(sqrt(10))(3hati+hatk),vecb=1/7(2hati+3hatj-6hatk) , then the value of (2veca-vecb).{(vecaxxvecb)xx(veca+2vecb)} is

A class XII student appearing for a competitive examination was asked to attempt the following questions Let veca,vecb and vecc be three non zero vectors. If veca=hati-2hatj,vecb=2hati+hatj+3hatk then evaluate (2veca+vecb).[(veca+vecb)xx(veca-2vecb)]

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

If vecA=9hati-7hatj+5hatk and vecB=3hati-2hatj-6hatk then the value of (vecA+vecB).(vecA-vecB) is

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = (hati - 2hatj -3hatk) and vecb = (2hati + 4hatj +9 hatk) then find a unit vector parallel to (veca + vecb) .

MOTION-VECTOR -EXERCISE - 4 ( LEVEL-II)
  1. Let veca, vecb ,vecc be unit vetors such that veca + vecb + vecc = ve...

    Text Solution

    |

  2. Assertion: vec(PQ)xx(vec(RS)+vec(ST))!=0, Reason : vec(PQ)xxvec(RS)=ve...

    Text Solution

    |

  3. The edges of a parallelopiped are of unit length and are parallel to n...

    Text Solution

    |

  4. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  5. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  6. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  7. If veca and vecb are vectors in space given by veca=(hati-23hatj)/(sqr...

    Text Solution

    |

  8. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  9. The vectors which is/are coplanar with vectors hati+hatj+2hatk and hat...

    Text Solution

    |

  10. Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be th...

    Text Solution

    |

  11. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |

  12. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |

  13. Let vecx,vecy and vecz be three vector each of magnitude sqrt(2) an...

    Text Solution

    |

  14. Let veca, vecb and vecc be non - coplanar unit vectors, equally inclin...

    Text Solution

    |

  15. Let triangle PQR be a triangle. Let veca = vec(QR) , vecb = vec(RP) a...

    Text Solution

    |

  16. Let vecu = u(1)hati + u(2)hatj +u(3)hatk be a unit vector in R^(3) a...

    Text Solution

    |

  17. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  18. Let O be the origin and OX, OY, OZ be three unit vectors in the direct...

    Text Solution

    |

  19. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  20. Letveca and vecb be two unit vectors such that veca.vecb=0. For some x...

    Text Solution

    |