Home
Class 14
MATHS
" (0.) "y=tan^(-1)((3x-x^(3))/(1-3x^(2))...

" (0.) "y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt(1)/(sqrt(3))

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))