Home
Class 12
MATHS
" If "f(x)=x+(1)/(x)," prove that "[f(x)...

" If "f(x)=x+(1)/(x)," prove that "[f(x)]^(3)=f(x^(3))+3f((1)/(r))

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

ff(x)=x+(1)/(x), thenprovethat [f(x)]^(3)=f(x^(3))+3f((1)/(x))

(i) If f(x) = x + (1)/(x) prove that: [f(x)]^(3) = f(x^(3)) + 3f ((1)/(x)) (ii) If f(x) = x^(3) - (1)/(x^(3)) , prove that f(x) + f((1)/(x)) = 0 (iii) If f(x) = (1-x^(2))/(1+ x^(2)) , prove that f (tan theta) = cos 2 theta

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x) =x+1/x , prove that : [f(x)]^3 = f(x^3)+3f (1/x) .

If f(x)=x+1/x , prove that [f(x)]^3=f(x^3)+3f(1/x)dot .

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).