Home
Class 11
MATHS
=log(3)(2x^(2)+6x-5)>1" hes "...

=log_(3)(2x^(2)+6x-5)>1" hes "

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: log_(3)(2x^(2)+6x-5)>1

log_((1)/(2))(x^(2)-5x+6)>-1

Solve: (log)_3(2x^2+6x-5)>1

Solve: (log)_3(2x^2+6x-5)>1

Solve: (log)_3(2x^2+6x-5)>1

Solve: (log)_3(2x^2+6x-5)>1

Consider the inequalities log_(5)(x-3)+(1)/(2)log_(5)3<(1)/(2)log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt(3))x+log_((1)/(3))x<6

Find the sum of all integers satisfying the inequalities log_(5)(x-3)+1/2log_(5)3lt1/2log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt3)x+log_(1/3)xlt6

Solve for x: a) log_(0.5)(x^(2)-5x+6) ge -1 , b) log_(1//3)(log_(4)(x^(2)-5)) gt 0

Solve for x: a) log_(0.5)(x^(2)-5x+6) ge -1 , b) log_(1//3)(log_(4)(x^(2)-5)) gt 0