Home
Class 13
MATHS
" The integral "int(1)^(3){((x)/(e))^(2x...

" The integral "int_(1)^(3){((x)/(e))^(2x)-((e)/(x))^(x)}log_(e)xdx" is equal to : "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int[((x)/(e))^(x)+((e)/(x))^(x)]ln xdx

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to