Home
Class 12
MATHS
If |z-2i|+|z-2|geq||z|-|z-2-2i||, then ...

If `|z-2i|+|z-2|geq||z|-|z-2-2i||`, then locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+2+3i|=5 then the locus of z is

If |z+i|^2-|z-i|^2=3 then the locus of z is

The z^(2)+z|z|+|z|^(2)=0, then locus of Z is

If |z+i|^2−|z−i|^2 =3 then the locus of z is

If |z+i|^2−|z−i|^2 =4 then the locus of z is

If |(z-i)/(z+i)|=1 then the locus of z is

If |(z+4i)/(z-2)|=2 then the locus of z is

If |(z-i)/(z+i)|=1 , then the locus of z is

If z satisfies |z-6+4i|+|z-3+2i|=13 then the locus of z is

If z=x+iy is a complex number satisfying |z+i/2|^2=|z-i/2|^2 , then the locus of z is