Home
Class 12
MATHS
f(x)={[(sin ax)/(sin bx),x!=0],[(a)/(b),...

f(x)={[(sin ax)/(sin bx),x!=0],[(a)/(b),x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin ax)/(sin bx)a,b,!=0

Compute Lt_(x to 0)(sin ax)/(sin bx), b != 0, a != b

lim_(x rarr0)(sin ax+bx)/(ax+sin bx)a,b,a+b!=0

Prove that f(x)={(sin^(2)ax)/(1),x!=01 and 1,x=0 is not continuous at x=0

Evaluate : lim_(x rarr 0)(sin ax)/(sin bx), a,b ne 0 .

Evaluate lim_(x rarr 0) (sin ax)/(sin bx) , a,b ne 0

Let f: R to R be a function defined as f(x)={(,(sin (a+1)x+sin 2x)/(2x), if x lt 0),(, b, if x=0), (,(sqrt(x+bx^(3))-sqrtx)/(bx^(5/2)), if x gt 0):} If f is continuous at x=0 then the value of a+b is equal to :