Home
Class 11
MATHS
If alpha,beta are the roots of ax^2 + c ...

If `alpha,beta` are the roots of `ax^2 + c = bx`, then the equation `(a + cy)^2 =b^2y` in y has the roots

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of a x^2+c=b x , then the equation (a+c y)^2=b^2y in y has the roots a. alphabeta^(-1),alpha^(-1)beta b. alpha^(-2),beta^(-2) c. alpha^(-1),beta^(-1) d. alpha^2,beta^2

If alpha,beta re the roots of ax^(2)+c=bx, then the equation (a+cy)^(2)=b^(2)y in y has the roots a.alpha beta^(-1),alpha^(-1)beta b.alpha^(-2),beta^(-2) c.alpha^(-1),beta^(-1) d.alpha^(2),beta^(2)

If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^2=b^2y in y has the roots a. alphabeta^(-1),alpha^(-1)beta b. alpha^(-2),beta^(-2) c. alpha^(-1),beta^(-1) d. alpha^2,beta^2

If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^2=b^2y in y has the roots a. alphabeta^(-1),alpha^(-1)beta b. alpha^(-2),beta^(-2) c. alpha^(-1),beta^(-1) d. alpha^2,beta^2

If alpha, beta are the roots of the equation ax^(2) -bx +c=0 then equation (a+cy)^(2) =b^(2) y has the roots

If alpha, beta are the roots of the equation ax^(2) -bx +c=0 then equation (a+cy)^(2) =b^(2) y has the roots

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

IF alpha , beta are the roots of ax^2 + bx +c=0 then the equation whose roots are 2 + alpha ,2+beta is