Home
Class 11
MATHS
Show that x(sqrt(x)-sqrt(x+1)) is not di...

Show that `x(sqrt(x)-sqrt(x+1))` is not differentiable at `x=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1+x ln(x+sqrt(x^(2)+1))>=sqrt(1+x^(2)) for all x>=0

Differentiate (1+sqrt(x))/(sqrt(x)-x)

Differentiate sqrt(x) +1/ (sqrt(x) )

Differentiate (sqrt(x)+(1)/(x))(x-(1)/sqrt(x)) with respect to 'x'.

Differentiate (sqrt(x)+(1)/(x))(x-(1)/sqrt(x)) with respect to 'x'.

Differentiate (sqrt(a)+sqrt(x))/(sqrt(a)-sqrt(x)) with respect to 'x'.

Differentiate (sqrt(a)+sqrt(x))/(sqrt(a)-sqrt(x)) with respect to 'x'.

Let f(x) ={{:(sqrt(x)(1+x sin (1//x)), xgt0),( - sqrt((-x))(1+ sin (1//x)), x lt 0),( 0, x=0):} Discuss differentiability at x=0.

Differentiate (sqrt(x)-sqrt(a))/(sqrt(x+a))