Home
Class 9
MATHS
" (ii) "p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2...

" (ii) "p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2

Promotional Banner

Similar Questions

Explore conceptually related problems

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

By remainder theorem , find the remainder when p(x) is divided by g(x) where , (i) p(x) =x^(3) -2x^2 -4x -1 ,g(x) =x+1 (ii) p(x) =4x^(3) -12x^(2) +14x -3,g(x) =2x-1 (iii) p(x) =x^(3) -3x^(2) +4x +50 ,g(x) =x-3

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and reminder in each of the following. (i) p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: p(x) = x^3 + 3x^2+ 3x + 1, g(x) = x + 2

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2