Home
Class 10
MATHS
" 54."(3)/(x+1)-(1)/(2)=(2)/(3x-1),x!=-1...

" 54."(3)/(x+1)-(1)/(2)=(2)/(3x-1),x!=-1,(1)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

Value of ((x-1)^(3)+(2x-1)^(3)-(3x2)^(3))/((x-1)(2x-1)(3x-2)) is equal to (A)-3(B)0(C)1(D)3

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

If (3(x^((1)/(3))-(1)/(x^((1)/(3)))))^((1)/(3))=2, then x^((1)/(3))+(1)/(x^((1)/(3)))=

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))

If x_(1)x_(1)x_(3)=4(4+x_(1)+x_(2)+x_(3)) then what is the value of [(1)/(2+x_(1))]+[(1)/(2+x_(2))]+[(1)/(2+x_(3))]?

(3x^2+1)/(3x^2)=1+1=2