Home
Class 12
MATHS
If A, B, C are the angles of a triangle ...

If `A, B, C` are the angles of a triangle then maximum value of `sin A + sin B + sin C and sin A sin B sin C` occurs when `A=B=C=60^@`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of a triangle, find the maximum values of : sin A sin B sin C

If A,B,C are the angles of a triangle, find the maximum values of : sin A+ sinB+ sin C

If A,B,C are the angles of a triangle then maximum value of C and sin A sin B sin C occurs when A=B=C=60^(@)

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A, B, C are angles of a triangle, then S. T sin 2A -sin 2B + sin 2C=4 CosA sin B CosC