Home
Class 12
MATHS
" The value of "cos(2cos^(-1)x+sin^(-1)x...

" The value of "cos(2cos^(-1)x+sin^(-1)x)" at "x=1/5" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

Find the values of cos(2cos^(-1)x+sin^(-1)x) at x = 1/5, where 0 le cos^(-1)x le pi and -pi//2 le sin^(-1)x le pi//2 .

Evaluate :cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5)

The value of cos(2cos^-1x+sin^-1x) at x= 1/5 is (A) 1 (B) 3 (C) 0 (D) (-2sqrt(6))/5

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :