Home
Class 12
MATHS
" The value of "int(e^(x)(x^(2)tan^(-1)x...

" The value of "int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(m tan^(-1)x))/(1+x^(2))dx

int (e^(m tan^(-1) x))/(1+x^(2)) dx=?

int(e^(tan^(-1)x))/(1+x^(2))dx :

int(tan^(-1)x+x+tan^(-1)((1)/(x)))dx =