Home
Class 12
MATHS
If A+B+C+D = 2pi, prove that : cosA +cos...

If `A+B+C+D = 2pi`, prove that : `cosA +cosB+cosC+cosD=4 cos( (A+B)/2) cos((B+C)/(2) )cos( (C+A)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A + B + C + D = 2pi , prove that: cos A + cos B + cos C + cos D =-4"cos"(A+B)/(2)"cos"(A+C)/(2)"cos"(A+D)/(2)

Prove that b cosB + c cosC = a cos ( B-C)

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A+B +C +D= 2 pi , prove that : cos A + cos B + cos C + cos D =-4 cos frac (A+B)(2) cos frac (A+C)(2) cos frac (A+D)(2) .

If A + B + C =pi , prove that : cos 2A + cos 2B + cos 2C = -1-4 cos A cos B cos C .

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .