Home
Class 9
MATHS
If a+b+c=0, then prove that ((b+c)^2)/(3...

If `a+b+c=0,` then prove that `((b+c)^2)/(3b c)+((c+a)^2)/(3a c)+((a+b)^2)/(3a b)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0, then prove that ((b+c)^(2))/(3bc)+((c+a)^(2))/(3ac)+((a+b)^(2))/(3ab)=1

If a+b+c=0 , then prove that (b+c)^2/(3bc )+ (c+a)^2/(3ca )+ (a+b)^2/(3ab )=1

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

If a+b+c=0 , then prove that a(b+c)^2+b(c+a)^2+c(a+b)^2=3abc

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a + b + c = 0 , then prove that (a^2+b^2+c^2)/(a^3+b^3+c^3)+2/3(1/a+1/b+1/c)=0

Prove that (a-2b)^3+(2b-c)^3+(c-a)^3 =3(a-2b)(2b-c)(c-a)

If a>0,b>0,c>0 prove that a/(b+c)+b/(c+a)+c/(a+b)ge3/2 .

If a, b, c are in A.P., prove that : a^3+4b^3+c^3=3b (a^2+c^2) .

If a+b+c=0 , then prove a^3+b^3+c^3=3a(c+a)(b+a)=3b(b+c)(b+a)=3c(c+a)(c+b)